

Lot 2 Phillip Drive South West Rocks

Final Groundwater Monitoring Report

Report Prepared for: Rise Projects Pty Ltd

May 2023

Prepared By:

Aquatic Science and Management

© Mathew Birch/Aquatic Science and Management, May 2023

This document is copyright and cannot be reproduced in part or whole without the express permission of the author. It has been prepared for the use of Rise Projects Pty Ltd and must not be used for any other purpose, person or organisation without the prior written approval of Mathew Birch/Aquatic Science and Management.

The contents of this report are provided expressly for the named clients for their own use. No responsibility is accepted for the use of or reliance upon this report in whole or in part by any third party. This report is prepared with information supplied by the client and possibly other stakeholders. While care is taken to ensure the veracity of information sources, no responsibility is accepted for information that is withheld, incorrect or that is inaccurate. This report has been compiled at the level of detail specified in the report and no responsibility is accepted for interpretations made at more detailed levels than so indicated.

Document History

Version	Issued To	Format	Date
v1	Nibraas Ahmed Liam Porritt	*.pdf	24/05/2023

Contents

1	Intro	oduction	1
	1.1	Introduction and Background	1
	1.2	Water Quality Guidelines and Objectives	1
	2 M	lethods	4
	2.1	Locations	4
	2.2	Monitoring Tasks	4
3	Resu	Ilts and Discussion	7
	3.1	Groundwater Level	7
	3.2	Groundwater Quality 1	11
	3.3	Slug Tests 1	17
R	eference	25	21
А	ppendix	s A2	22
А	ppendix	x B2	24

Figures

Figure 16	Scatterplot matrix of key dissolved metals concentrations presented by site collected	16
Figure 17	Slug test results from GW1	17
Figure 18	Slug test results from GW2	17
Figure 19	Slug test results from GW4	18
Figure 20	Slug test results from GW5	18
Figure 21	Slug test results from GW6	18
Figure 22	Slug test results from GW8	19

Tables

Table 1.1 Available ANZECC and ADWG guideline concentrations for relevant parameters	2
Table 3.1 Summary statistics from logged groundwater levels	8
Table 3.2 Median groundwater quality results from all sites	11
Table 3.3 Pearson's correlation coefficients (r) for all water quality parameters	14
Table 3.4 Hydraulic conductivity (K) and transmissivity (T) for each site	19

1 Introduction

1.1 Introduction and Background

Rise Projects Pty Ltd propose a mixed-use development at Lot 2 DP1091323, located off Phillip Drive South West Rocks. Due to the potential for interaction with a shallow water table at the site a Groundwater Assessment Methodology (GAM) has been prepared (Australasian Groundwater and Environmental Consultants Pty Ltd 2021). It includes a field characterisation stage that involves construction of 7 groundwater monitoring bores and groundwater level and quality assessments. A further (eighth) bore was constructed near the southwestern margin of the site and has been added to the monitoring program.

This report aims to address aspects of the field characterisation stage of the groundwater assessment methodology. It provides a summary of the groundwater monitoring activities and data collected between September 2022 and March 2023.

1.1.1 Aims and Objectives

The objective of groundwater monitoring is to assess the variability in groundwater level and quality across the site and over time.

The aim of this report is to provide a summary of groundwater monitoring activities and results collected, and to comply with the requirements of the GAM.

1.2 Water Quality Guidelines and Objectives

There are a variety of guidelines available for the comparison and assessment of results obtained from surface water and groundwater sampling. Choosing appropriate guidelines to assess water quality depends on the environmental values of the site, human uses, the objectives for water quality, the level of protection required for the site and the issues and associated risks present.

Most often, guidelines are derived from the Australian and New Zealand Environment Conservation Council (ANZECC) Guidelines for Water Quality (ANZECC 2000), The Australian Drinking Water Guidelines (National Health and Medical Research Council (NHMRC) 2013) and the Guidelines for Managing Risks in Recreational Waters (NHMRC 2011).

In the case of large datasets collected regularly over time and with an appropriate sampling design the ANZECC Guidelines suggest the use of median and 80th percentile (P80) concentrations from the gathered data. The SWMP and the GWMP employ a before/after, control/impact (BACI) sampling design to assess the impact of the highway upgrade on water quality. They recommend the use of the median values from the impact (downstream) sites and the P80 values from the control (upstream) sites for assessing impacts with the intention of informing ongoing management of water quality.

The ANZECC guidelines prescribe default guideline values for many water quality parameters. The individual values depend on the desired use of the water, perceived values of the water and the level of protection required. The default guideline values are intended to trigger further water quality investigations and to be used where there is an absence of locally derived guideline values. The ANZECC default guideline concentrations will be used in this report for providing context. The relevant ANZECC guideline concentrations are presented in **Table 1.1**.

The Australian Drinking Water Guidelines (ADWG, NHMRC 2013) provide guideline values for many water quality parameters that have potential impacts upon human health. In accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (DEC 2007) both the ADWG guidelines and the relevant ANZECC guidelines (default guidelines for Freshwater Aquatic Ecosystem Protection for 95% of species) to provide quantitative context. Importantly, results that exceed the ANZECC and ADWG guidelines are not necessarily an indication of poor water quality. The relevant ADWG concentrations are presented in **Table 1.1**.

Parameter	ANZECC Guideli for Aquatic Ecosys (95% of spp.) in m ecosystems	ADWG Concentrations	
	Freshwater	Marine	
Silver (µg/L)	0.05	1.4	100
Aluminium (µg/L)	55	0.5ª	200 ^b
Antimony (µg/L)	9	270	3
Arsenic (V) $(\mu g/L)$	13	4.5ª	10
Cadmium (µg/L)	0.2	5.5	2
Chromium (VI) (µg/L)	1.0	4.4	50
Copper (µg/L)	1.4	1.3	2000
Iron (µg/L)	-	-	300b
Manganese (µg/L)	1900	-	500

Table 1.1 Available ANZECC and ADWG guideline concentrations for relevant parameters

	ANZECC Guideli	ne Concentrations	
	for Aquatic Ecosys		
Parameter	(95% of spp.) in m	ADWG	
	ecosystems		Concentrations
	Freshwater	Marine	
Nickel (µg/L)	11	7	20
Lead (µg/L)	3.4	4.4	10
Selenium (µg/L)	5	-	10
Zinc (μ g/L)	8.0	15	300 ^b
Mercury (µg/L)	0.05	0.1	1
Chloride, Cl (mg/L)	-	-	250 ^b
Sulphate, SO4 (mg/L)	-	-	250 ^b
Bicarbonate Alkalinity as CaCO3 (mg/L)	-	-	-
Sodium – Dissolved (mg/L)	-	-	180b
Potassium – Dissolved (mg/L)	-	-	-
Calcium – Dissolved (mg/L)	-	-	-
Magnesium – Dissolved (mg/L)	-	-	-
Hydroxide Alkalinity (OH-) as CaCO3 (mg/L)	-	-	-
Carbonate Alkalinity as CaCO3 (mg/L)	-	-	200 ^b
Total Alkalinity as CaCO3 (mg/L)	-	-	-
Total Dissolved Solids (mg/L)	-	-	600 ^b
рН	6.5 - 8.0	7.0 - 8.5	6.5 - 8.5
Conductivity (mS/cm)	0.125 – 2.2	-	-

a – ANZECC low reliability trigger b – No health-based guideline value, aesthetic value applied.

2 Methods

2.1 Locations

2.1.1 Groundwater Monitoring Bores

The GAM specifies the locations of 7 monitoring bores. A map of bore locations is presented in **Illustration 2.1.** Coordinates for each of the bores are presented in **Table 3.1**. The locations of two bores were adjusted slightly from the proposed layout in the GAM to account for future construction works. An eighth bore was included to assist with site characterisation.

 Imagery: NSW Dept Customer Service. Data: NSW DFSI Spatial Services, ASM

 Illustration 2.1 Groundwater well locations in relation to the property boundary

2.2 Monitoring Tasks

2.2.1 Slug Tests

Slug tests were undertaken after well construction and development to provide an indication of the hydraulic conductivity of the soils. HOBO level dataloggers were used to measure changes in the water level at one second intervals. The tests involved:

- Insertion of a solid into the well, allow 2 minutes for the level to settle.
- Removal of the solid from the well, allow 2 minutes for the water level to settle.
- Remove one bailer of water from the well, allow 2 minutes for the water level to settle.

Slug tests were performed on 22 September 2022 and the data presented in the first monitoring report.

2.2.2 Groundwater Quality Monitoring

The GAM outlines the parameters required for groundwater quality monitoring. The parameters monitored were metals, major ions, pH and electrical conductivity. Electrical conductivity (EC) and pH were measured on site using a calibrated and regularly serviced HORIBA U52 multiparameter water quality meter. The other parameters were analysed by Envirolab Pty Ltd.

At each monitoring bore the groundwater monitoring tasks were as follows:

- Collect groundwater using a low flow peristaltic pump system with the pump inlet placed within the screened section of the monitoring bore. Filter and acid-fix the sample on site for metals analysis.
- Measure pH and EC in a flow cell.

Six sets of groundwater monitoring samples were collected between September 2022 and March 2023. The dates of sample collection were as follows:

- 21-22/09/2022
- **25/10/2022**
- **23/11/2022**
- **25/01/2023**
- **•** 27/02/2023
- **28/03/2023**

Samples were couriered in a chilled esky to Envirolab at the first possible opportunity after collection, typically on the day of collection.

2.2.3 Groundwater Level Monitoring

Groundwater level monitoring was undertaken using HOBO water level loggers, one in each monitoring bore set just above the bottom of the bore. Barometric pressure fluctuations were offset by readings from another HOBO located on site. The HOBOs were set to monitor groundwater level changes at 15-minute intervals and were checked monthly, with one exception. The dates of checks were the same as those listed for groundwater quality monitoring in **Section 2.2.2**.

Manual groundwater level measurements to the nearest centimetre are collected during each site visit using a Heron instruments Dipper T.

Water levels are reported to mAHD using the surveyed natural ground levels provided by Rise Projects Pty Ltd and manual measurements of monitoring well neck height and groundwater level collected during the site visits.

The total depths of the wells were measured during each of the site inspections.

3 Results and Discussion

3.1 Groundwater Level

The logged groundwater levels at each site are displayed in **Figures 1** to **3**. Summary statistics are displayed in **Table 3.2** and in **Figures 4** to **6**.

The logged levels at sites GW3 and GW7 show that the piezometers at these sites became dry as monitoring continued, first at GW3 in mid-November 2022 and then at GW7 in mid-January 2023.

Logged water levels (**Figures1** to **3**) show a range of less than 2 m at all sites in response to the conditions experienced over the first six months of monitoring. There is significant fall in the groundwater level across the site, most notable between sites GW5 and GW7, in short higher at the south and lower at the north. There also appears to be a notable variability in the response of groundwater to wet and dry conditions across the site from east to west.

The results displayed in **Figures 1** to **3** show that groundwater levels respond differently to wet and dry weather across the site but that there are distinct patterns among some groups of sites. The sensitivity of the piezometers at GW1, GW2 and GW3 were very similar (**Figure 1**) as were those at GW6, GW7 and GW8 (**Figure 3**). The piezometers at GW4 and GW5 responded uniquely to wet and dry weather in the context of the site (**Figure 2**).

Figure 1 Groundwater levels from GW1, GW2 and GW3 plotted against rainfall

Figure 2 Groundwater levels from GW4 and GW5 plotted against rainfall

Figure 3 Groundwater levels from GW6, GW7 and GW8 plotted against rainfall

Site	Position (East)	Position (North)	Elevation (Ground, mAHD)	Average Level (mAHD)	Median Level (mAHD)	Max Level (mAHD)	Range (m)
GW1	505570	6582508	2.79	2.02	1.93	2.92	1.24
GW2	505587	6582471	3.76	2.59	2.47	3.66	1.53
GW3	505642	6582420	5.52	3.80	3.76	4.42	0.77*
GW4	505686	6582518	1.98	1.83	1.77	2.29	0.77
GW5	505792	6582515	1.75	1.10	1.05	1.78	1.01
GW6	505795	6582445	4.55	3.06	3.03	3.67	1.05
GW7	505786	6582400	6.27	3.89	3.79	4.43	0.76*
GW8	505873	6582438	5.23	3.17	3.09	3.71	0.88

Table 3.1 Summary statistics from logged groundwater levels

* Not likely to represent total range, piezometer dry at lower levels

The direction of fall in the groundwater levels across the site is clearly in a north south direction. Regression analysis using the maximum, mean and median water levels at each monitoring site demonstrates this clearly. **Figures 4** through **6** show that the north south position of the site is the feature that most influences the maximum, mean and median groundwater levels.

Figure 4 3D plot of mean water level against northern and eastern coordinates with a linear regression plane (Adjusted $R^2 = 0.9448$)

Figure 5 3D plot of median water level against northern and eastern coordinates with a linear regression plane (Adjusted $R^2 = 0.9402$)

Phillip Dr SWR - Groundwater Monitoring Report

Figure 6 3D plot of maximum water level against northern and eastern coordinates with a linear regression plane (Adjusted $R^2 = 0.9615$)

The maximum groundwater level was the statistic that provided the most accurate linear regression plane ($R^2 = 0.9615$). This result is somewhat intuitive because the mean and median statistics from GW3 and GW7 are compromised by the lack of resolution when groundwater levels fell below the bottom of the piezometers at these two sites, which they did for much of the monitoring period. The maximum groundwater levels indicate that there is a small degree of fall from west to east in the groundwater levels across the site (approximately 1 m fall over 500 m) but still indicate that most of the fall is in the south to north direction (approximately 2.5 m fall over 120 m).

3.2 Groundwater Quality

Summary groundwater quality information is displayed in Table 3.3.

Table 3.2 Median groundwater quality results from all sites

	Cuidalina	Site								
Parameter	Guidennes		GW1	GW2	GW3	GW4	GW5	GW6	GW7	GW8
	Freshwater ANZECC	ADWG	Median							
Number of Samples	-	-	6	6	1	6	6	6	2	6
Silver (µg/L)	0.5	100	1	1	1	1	1	1	1	1
Aluminium (μg/L)	55	200	355	215	1400	270	420	1550	1285	1550
Arsenic (V) (µg/L)	13	10	1	1	1	1	2	1	1	1
Cadmium (µg/L)	0.2	2	0.1	0.1	0.1	0.1	0.1	0.1	0.25	0.1
Chromium (VI) (µg/L)	1	50	1	1	1	1	1	1	1	1
Copper (µg/L)	1.4	2000	1	1	4	2	1	1	4	2.5
Iron ($\mu g/L$)	-	300	360	655	150	125	160	920	1275	975
Manganese (µg/L)	1900	500	52	50	5	5	5	8	12	5
Nickel ($\mu g/L$)	11	20	1	1	1	1	1	1	2	1
Lead (µg/L)	3.4	10	1	1	1	1	1	1	1	1
Selenium (µg/L)	5	10	1	1	1	1	1	1	1	1
Zinc (μ g/L)	8	300	5	9	11	18	18	12	55	18
Mercury (µg/L)	0.05	1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Calcium – Dissolved (mg/L)	-	-	8.3	4.5	2.0	6.3	0.5	3	2.3	2.5
Potassium – Dissolved (mg/L)	-	-	0.5	0.8	0.9	2.0	0.8	1	1.5	2
Sodium – Dissolved (mg/L)	-	180	7.9	6.7	14.0	11.9	9.4	12.5	9.6	13
Magnesium – Dissolved (mg/L)	-	-	2	1	1	2	1	3	3	2
Hydroxide Alkalinity (OH-) as CaCO3 (mg/L)	-	-	5	5	5	5	5	5	5	5
Bicarbonate Alkalinity as CaCO3 (mg/L)	-	-	25	14	38	30	7	5	5	6
Carbonate Alkalinity as CaCO3 (mg/L)	-	200	5	5	5	5	5	5	5	5
Total Alkalinity as CaCO3 (mg/L)	-	-	25	14	38	30	7	5	5	6
Sulphate, SO4 (mg/L)	-	250	4	3	2	4	2	1	7	2
Chloride, Cl (mg/L)	-	250	12	10	2	13	12	28	18	20
Ionic Balance	-	-	-3	-4	-9	1	0	10	5	12
Total Dissolved Solids (mg/L)	-	600	59	44	38	83	39	175	62	134
рН	6.5 - 8.0	6.5 - 8.5	5.53	5.54	-	5.74	5.46	5.37	4.99	4.71
Conductivity (mS/cm)	0.125 - 2.2	-	0.102	0.073	-	0.089	0.062	0.119	0.077	0.106

Results in **RED** exceed a guideline value

Several median results exceeded the relevant default guideline values. This included:

- All of the median dissolved aluminium, pH and electrical conductivity measurements.
- Median dissolved zinc concentrations at all sites except GW1.
- Median dissolved iron concentrations at all sites except GW3, GW4 and GW5.
- Median dissolved copper concentrations at GW3, GW4, GW7 and GW8.
- The median cadmium concentration at GW7.

These results are of interest but do not necessarily indicate a pollution event or an abnormality. Of the median results that exceeded the relevant default guidelines (results of interest), some are of little relevance. For example, the median copper concentrations at sites GW3, GW4, GW7 and GW8 and the median cadmium concentration at GW7 only slightly exceed the relevant ANZECC guideline concentration.

Box plots of these parameters (**Figures 7 - 12**) indicate that, in general, but with some minor exceptions, dissolved metals concentrations increased across the site in an east to west direction and pH decreased across the site in an east to west direction. This basic trend indicates that pH may be the key factor driving metals concentrations on site, as the solubility of most metals in water increases in relation to decreasing pH.

30 25

Dissolved Cu (ug/L)

in in

GW4

Site

GW3

GW6

GW

GW3

GW2

Figure 10 Box plots of dissolved iron at all sites

The low pH and conductivity results from across the site are likely to result from natural features associated with the biogeography of the site and surrounds. This is also the case with the elevated iron and aluminium concentrations from many of the sites. All of these results are likely to result from shallow potential acid sulfate soils under and around the site (**Illustration 3.1**).

Illustration 3.1 Acid sulfate soil risk in the study area

Pearson's correlation analysis of the collected results was undertaken to assess the potential for relationships (such as those between pH and dissolved metals) between the various parameters. The results of the correlation analysis are displayed in **Table 3.4**.

Variable	As	Cd	Cr	Cu	Fe	Mn	Ni	Zn	pН	Ca	K	Na	Mg	Alkalinity	SO4	Cl	Ionic Balance	TDS	EC
Al	-0.23	0.35	0	0.07	0.75	-0.34	0.07	0.38	-0.32	-0.39	0.42	0.48	0.69	-0.49	0.11	0.75	0.56	0.53	0.24
As		-0.14	0.1	-0.01	-0.26	-0.06	-0.11	-0.01	0.16	-0.1	-0.14	0	-0.09	-0.03	0.24	-0.19	-0.12	-0.09	-0.03
Cd			-0.14	-0.13	0.17	-0.2	0.4	0.3	0.1	-0.2	0.23	0.32	0.12	0	0.07	0.16	0.02	-0.08	-0.23
Cr				0.24	0.23	0.01	-0.09	0.02	0.14	0.28	-0.01	0.1	0.19	0.39	0.02	-0.14	-0.09	-0.07	0.12
Cu					-0.02	-0.2	-0.01	0.12	-0.23	0	0.4	0.44	0.12	0.08	-0.03	0.23	0.18	0.12	0.35
Fe						0.02	0.21	0.29	-0.19	-0.16	0.17	0.14	0.61	-0.31	0.09	0.48	0.37	0.38	0.05
Mn							0.08	-0.35	0.17	0.56	-0.47	-0.53	-0.31	0.31	0.05	-0.36	-0.37	-0.16	-0.06
Ni								0.21	0.2	0.02	0.18	0.12	0.02	0.18	0.12	-0.03	-0.2	-0.06	-0.12
Zn									-0.12	-0.21	0.48	0.37	0.37	-0.1	0.47	0.27	0.11	0.17	0.18
pН										0.31	-0.04	-0.24	-0.11	0.39	0.3	-0.32	-0.61	-0.13	-0.1
Ca											0.02	-0.09	-0.02	0.85	0.2	-0.34	-0.19	0.07	0.42
K												0.67	0.4	0.09	0.4	0.47	0.26	0.54	0.52
Na													0.61	0.09	0.2	0.64	0.47	0.63	0.63
Mg														-0.12	0.35	0.78	0.44	0.71	0.57
Alkalinity															0.13	-0.45	-0.35	-0.1	0.31
SO4																0.12	-0.16	0.33	0.23
CI																	0.45	0.75	0.54
Ionic Balance																		0.46	0.25
TDS																			0.71

Table 3.3 Pearson's correlation coefficients (r) for all water quality parameters

Most variables showed little ($|\mathbf{r}| < 0.3$) or weak ($0.3 < |\mathbf{r}| < 0.5$) linear associations. Seventeen paired variables showed moderate ($0.5 < |\mathbf{r}| < 0.7$) linear associations, and a five showed strong ($|\mathbf{r}| > 0.7$) linear associations. Those showing moderate or strong linear associations were

- Calcium ions and magnesium ions (mod).
- Sodium ions and dissolved manganese (mod) and potassium ions (mod).
- Magnesium ions and dissolved aluminium (mod), dissolved iron (mod) and sodium ions (mod).
- Alkalinity and calcium ions (str).
- Chloride ions and dissolved aluminium (mod), sodium ions (mod) and magnesium ions (str).
- Ionic balance and dissolved aluminium (mod) and pH (mod).
- TDS and dissolved aluminium (mod), potassium ions (mod), sodium ions (mod), magnesium ions (str) and chloride ions (str).
- Electrical conductivity and potassium ions (mod), sodium ions (mod), magnesium ions (mod), chloride ions (mod) and TDS (str).

Many of the linear associations detected result from basic water chemistry, such as the associations between ions and measures of salinity (EC and/or TDS). The indications of a relationship between pH and dissolved metals were not supported by the results of the correlation analysis.

Scatterplot matrices showing the distributions pf key related variables and the metals that exceeded default guideline values are presented in **Figures 13** to **16**.

Figure 13 Scatterplot matrix of related ion concentrations presented by date collected

Figure 14 Scatterplot matrix of ion concentrations presented by site collected

Figure 15 Scatterplot matrix of key dissolved metals concentrations presented by date collected

Figure 16 Scatterplot matrix of key dissolved metals concentrations presented by site collected

The scatterplot matrices presented in **Figures 13** to **16** indicate that, in general, much of the variation in the major ions dataset is explained by site. Although TDS and EC showed a tendency to group by date collected, the major ions did not appear to group by date collected in any sense. On the other hand, there is apparent grouping by site in the case of all the major ions displayed. The dissolved metals concentrations show a similar but more definite trend, with little grouping by date collected displayed. The conclusion arising from this observation is that groundwater quality in the study area is more likely to be influenced by site than by weather conditions or season.

3.3

Slug tests were performed in all wells. However, the water levels in GW3 and GW7 were so close to the bottom of the wells that the slug test results are erroneous. Graphs of all other tests are presented in Figures 17 to 22. The graphs show a rapid response of the groundwater levels in all wells, indicating very high hydraulic conductivity of the soils throughout the site. In general, the hydraulic conductivity reduces slightly at the more westward sites.

Figure 17 Slug test results from GW1

Figure 18 Slug test results from GW2

Figure 19 Slug test results from GW4

Figure 20 Slug test results from GW5

Figure 21 Slug test results from GW6

Figure 22 Slug test results from GW8

GW8

Hydraulic conductivity (K) and transmissivity (T) were estimated using the Bauwer and Rice method applied to the rising head slug tests from the bailed water part of the tests only. The Bauwer and Rice method was applied to the data using the spreadsheet and assumptions from the US Geological Survey (Halford and Kuniansky 2002). The results are presented in **Table 3.4**.

	-		
Site	K(m/s)	T(m2/s)	t 90% recovery(s)
GW1	Error	Error	Error
GW2	0.000073	0.000071	10
GW3	N/A	N/A	N/A
GW4	0.000027	0.000020	47
GW5	0.000024	0.000023	30
GW6	0.000018	0.000016	40
GW7	N/A	N/A	N/A

78

0.000008

Table 3.4 Hydraulic conductivity (K) and transmissivity (T) for each site

0.000012

4 Conclusions

Monitoring of the groundwater at the Phillip Drive site was undertaken according to the requirements of the GAM. This is the final monitoring report and presents all six months of groundwater level and groundwater quality measurements in addition to the results of slug tests.

The data presented provides an indication of significant short-term variability in groundwater level and quality. The data also provides an indication of some spatial variability in hydraulic conductivity, groundwater levels and groundwater quality across the site. Groundwater levels decreased fairly consistently across the site in a mostly south to north direction. Hydraulic conductivity, which was very high towards the eastern end of the site, tended to reduce somewhat inconsistently in a westerly direction. Groundwater quality appears to be influenced more by location than by weather or season, although at most sites there was some variability within the parameters measured. Although median concentrations of some of the parameters were above relevant default guideline values there is no evidence of groundwater pollution among the parameters measured. High measurements are considered likely to result from the natural biogeographical features of the site and surrounds.

References

Australasian Groundwater and Environmental Consultants Pty Ltd (2021) Proposed development at Lot 2 Phillip Drive, South West Rocks – Groundwater Assessment Methodology. Memo to Rise Projects Pty Ltd dated 8 March 2021

ANZECC (2000) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality.* Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand.

Halford, K. & Kuniansky, E. (2002) Documentation of Spreadsheets for the Analysis of Aquifer-Test and Slug-Test Data. US Geological Survey, Carson City.

NHMRC (2011) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra.

Appendix A

Lab Reports

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 306649

Client Details	
Client	Aquatic Science and Management
Attention	Mathew Birch
Address	PO Box 214, Bellingen, NSW, 2454

Sample Details	
Your Reference	Phillip Drive Groundwater
Number of Samples	7 Water
Date samples received	27/09/2022
Date completed instructions received	27/09/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	05/10/2022						
Date of Issue	05/10/2022						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *						

<u>Results Approved By</u> Giovanni Agosti, Group Technical Manager Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 306649 Revision No: R00

Page | 1 of 10

HM in water - dissolved						
Our Reference		306649-1	306649-2	306649-3	306649-4	306649-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Date Sampled		21/09/2022	21/09/2022	21/09/2022	21/09/2022	21/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Silver-Dissolved	µg/L	<1	<1	<1	<1	<1
Aluminium-Dissolved	µg/L	1,000	210	310	440	1,800
Arsenic-Dissolved	µg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	0.5	0.4	0.2
Chromium-Dissolved	µg/L	4	<1	1	<1	1
Copper-Dissolved	µg/L	1	2	2	<1	<1
Iron-Dissolved	µg/L	1,900	900	130	40	740
Manganese-Dissolved	µg/L	28	57	<5	<5	<5
Nickel-Dissolved	µg/L	<1	6	4	<1	2
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	µg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	µg/L	6	12	24	20	11
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved			
Our Reference		306649-6	306649-7
Your Reference	UNITS	GW7	GW8
Date Sampled		21/09/2022	21/09/2022
Type of sample		Water	Water
Date prepared	-	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022
Silver-Dissolved	µg/L	<1	<1
Aluminium-Dissolved	µg/L	2,000	2,000
Arsenic-Dissolved	µg/L	<1	<1
Cadmium-Dissolved	µg/L	0.4	0.7
Chromium-Dissolved	µg/L	1	1
Copper-Dissolved	µg/L	<1	<1
Iron-Dissolved	µg/L	2,200	970
Manganese-Dissolved	µg/L	11	<5
Nickel-Dissolved	µg/L	3	2
Lead-Dissolved	µg/L	<1	<1
Selenium-Dissolved	µg/L	<1	<1
Zinc-Dissolved	µg/L	76	16
Mercury-Dissolved	µg/L	<0.05	<0.05

Ion Balance						
Our Reference		306649-1	306649-2	306649-3	306649-4	306649-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Date Sampled		21/09/2022	21/09/2022	21/09/2022	21/09/2022	21/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Calcium - Dissolved	mg/L	7.2	5	6.6	<0.5	2
Potassium - Dissolved	mg/L	0.6	0.9	2	0.6	0.9
Sodium - Dissolved	mg/L	7.9	5.4	17	9.1	11
Magnesium - Dissolved	mg/L	3	0.7	2	1	3
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	26	16	41	8	6
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	26	16	41	8	6
Sulphate, SO4	mg/L	4	3	9	3	<1
Chloride, Cl	mg/L	11	8	13	12	27
Ionic Balance	%	1.0	-6.0	-5.0	-5.0	-4.0

Ion Balance			
Our Reference		306649-6	306649-7
Your Reference	UNITS	GW7	GW8
Date Sampled		21/09/2022	21/09/2022
Type of sample		Water	Water
Date prepared	-	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022
Calcium - Dissolved	mg/L	0.6	2
Potassium - Dissolved	mg/L	2	2
Sodium - Dissolved	mg/L	10	14
Magnesium - Dissolved	mg/L	3	2
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	<5	6
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5
Total Alkalinity as CaCO₃	mg/L	<5	6
Sulphate, SO4	mg/L	8	1
Chloride, Cl	mg/L	21	21
Ionic Balance	%	0	13

Miscellaneous Inorganics						
Our Reference		306649-1	306649-2	306649-3	306649-4	306649-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Date Sampled		21/09/2022	21/09/2022	21/09/2022	21/09/2022	21/09/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Total Dissolved Solids (grav)	mg/L	57	40	89	39	79

Miscellaneous Inorganics			
Our Reference		306649-6	306649-7
Your Reference	UNITS	GW7	GW8
Date Sampled		21/09/2022	21/09/2022
Type of sample		Water	Water
Date prepared	-	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022
Total Dissolved Solids (grav)	mg/L	70	67

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: HM in water - dissolved						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	306649-2
Date prepared	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Date analysed	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Silver-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	89	[NT]
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	1000	1000	0	110	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	4	5	22	97	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	1	1	<1	0	95	[NT]
Iron-Dissolved	µg/L	10	Metals-022	<10	1	1900	1900	0	97	[NT]
Manganese-Dissolved	µg/L	5	Metals-022	<5	1	28	29	4	97	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	1	0	96	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	91	[NT]
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	95	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	6	6	0	98	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	109	118

QUALITY CONTROL: Ion Balance						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	306649-2	
Date prepared	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022	
Date analysed	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7.2	7.2	0	92	[NT]	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.6	0.6	0	92	[NT]	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7.9	7.9	0	97	[NT]	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	3	3	0	94	[NT]	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	26	24	8	[NT]	[NT]	
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]	
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	26	24	8	109	[NT]	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	4	4	0	83	81	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	11	11	0	94	95	
Ionic Balance	%		Inorg-040	[NT]	1	1.0	2.0	67	[NT]	[NT]	

QUALITY CONTROL: Miscellaneous Inorganics					Duplicate				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	[NT]
Date analysed	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	57	57	0	100	[NT]

Result Definitions	
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions	
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 309095

Client Details	
Client	Aquatic Science and Management
Attention	Mathew Birch
Address	PO Box 214, Bellingen, NSW, 2454

Sample Details	
Your Reference	Phillip Drive Groundwater
Number of Samples	8 Water
Date samples received	27/10/2022
Date completed instructions received	27/10/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	03/11/2022					
Date of Issue	03/11/2022					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 309095 Revision No: R00

Page | 1 of 10

HM in water - dissolved						
Our Reference		309095-1	309095-2	309095-3	309095-4	309095-5
Your Reference	UNITS	GW1	GW2	GW3	GW4	GW5
Date Sampled		25/10/2022	25/10/2022	25/10/2022	25/10/2022	25/10/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022
Date analysed	-	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022
Silver-Dissolved	µg/L	<1	<1	<1	<1	<1
Aluminium-Dissolved	µg/L	320	310	1,400	340	330
Arsenic-Dissolved	µg/L	<1	<1	<1	2	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	1	2	1
Copper-Dissolved	µg/L	<1	<1	4	1	1
Iron-Dissolved	µg/L	330	1,000	150	110	60
Manganese-Dissolved	µg/L	29	56	<5	<5	<5
Nickel-Dissolved	µg/L	<1	1	<1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	µg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	µg/L	3	1	11	50	26
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved				
Our Reference		309095-6	309095-7	309095-8
Your Reference	UNITS	GW6	GW7	GW8
Date Sampled		25/10/2022	25/10/2022	25/10/2022
Type of sample		Water	Water	Water
Date prepared	-	31/10/2022	31/10/2022	31/10/2022
Date analysed	-	31/10/2022	31/10/2022	31/10/2022
Silver-Dissolved	µg/L	<1	<1	<1
Aluminium-Dissolved	µg/L	340	570	1,400
Arsenic-Dissolved	μg/L	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	1
Copper-Dissolved	µg/L	15	7	2
Iron-Dissolved	μg/L	550	350	980
Manganese-Dissolved	µg/L	8	13	<5
Nickel-Dissolved	μg/L	<1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1
Zinc-Dissolved	µg/L	7	33	14
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05

Ion Balance						
Our Reference		309095-1	309095-2	309095-3	309095-4	309095-5
Your Reference	UNITS	GW1	GW2	GW3	GW4	GW5
Date Sampled		25/10/2022	25/10/2022	25/10/2022	25/10/2022	25/10/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/10/2022	27/10/2022	27/10/2022	27/10/2022	27/10/2022
Date analysed	-	27/10/2022	27/10/2022	27/10/2022	27/10/2022	27/10/2022
Calcium - Dissolved	mg/L	10	7.3	2	10	0.5
Potassium - Dissolved	mg/L	<0.5	0.8	0.9	2	<0.5
Sodium - Dissolved	mg/L	8.2	5.8	14	16	9.9
Magnesium - Dissolved	mg/L	2	0.7	<0.5	3	1
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5	<5 <5		<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	33	19	38	39	6
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	33	19	38	39	6
Sulphate, SO4	mg/L	<1	<1 2		6	<1
Chloride, Cl	mg/L	7	8	2	15	13
Ionic Balance	%	9.0	4.0	-9.0	5.0	7.0

Ion Balance				
Our Reference		309095-6	309095-7	309095-8
Your Reference	UNITS	GW6	GW7	GW8
Date Sampled		25/10/2022	25/10/2022	25/10/2022
Type of sample		Water	Water	Water
Date prepared	-	27/10/2022	27/10/2022	27/10/2022
Date analysed	-	27/10/2022	27/10/2022	27/10/2022
Calcium - Dissolved	mg/L	3	4	3
Potassium - Dissolved	mg/L	1	1	2
Sodium - Dissolved	mg/L	13	9.2	13
Magnesium - Dissolved	mg/L	3	2	2
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	<5	5	6
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	<5	5	6
Sulphate, SO4	mg/L	<1	6	<1
Chloride, Cl	mg/L	28	15	24
Ionic Balance	%	12	9.0	11

Miscellaneous Inorganics											
Our Reference		309095-1	309095-2	309095-3	309095-4	309095-5					
Your Reference	UNITS	GW1	GW2	GW3	GW4	GW5					
Date Sampled		25/10/2022	25/10/2022	25/10/2022	25/10/2022	25/10/2022					
Type of sample		Water	Water	Water	Water	Water					
Date prepared	-	02/11/2022	02/11/2022	02/11/2022	02/11/2022	02/11/2022					
Date analysed	-	02/11/2022	02/11/2022	02/11/2022	02/11/2022	02/11/2022					
Total Dissolved Solids (grav)	mg/L	55 42 38		38	160	39					

Miscellaneous Inorganics				
Our Reference		309095-6	309095-7	309095-8
Your Reference	UNITS	GW6	GW7	GW8
Date Sampled		25/10/2022	25/10/2022	25/10/2022
Type of sample		Water	Water	Water
Date prepared	-	02/11/2022	27/10/2022	27/10/2022
Date analysed	-	02/11/2022	27/10/2022	02/11/2022
Total Dissolved Solids (grav)	mg/L	160	54	220

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: HM in water - dissolved						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			31/10/2022	1	31/10/2022	31/10/2022		31/10/2022	[NT]
Date analysed	-			31/10/2022	1	31/10/2022	31/10/2022		31/10/2022	[NT]
Silver-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	107	[NT]
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	320	320	0	93	[NT]
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	95	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	96	[NT]
Iron-Dissolved	µg/L	10	Metals-022	<10	1	330	320	3	93	[NT]
Manganese-Dissolved	µg/L	5	Metals-022	<5	1	29	28	4	93	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	102	[NT]
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	99	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	3	3	0	95	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	[NT]		105	[NT]

QUALITY CONTROL: HM in water - dissolved						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	7	31/10/2022	31/10/2022		[NT]	[NT]
Date analysed	-			[NT]	7	31/10/2022	31/10/2022		[NT]	[NT]
Silver-Dissolved	µg/L	1	Metals-022	[NT]	7	<1	[NT]		[NT]	[NT]
Aluminium-Dissolved	µg/L	10	Metals-022	[NT]	7	570	[NT]		[NT]	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	[NT]	7	<1	[NT]		[NT]	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	[NT]	7	<0.1	[NT]		[NT]	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	[NT]	7	<1	[NT]		[NT]	[NT]
Copper-Dissolved	µg/L	1	Metals-022	[NT]	7	7	[NT]		[NT]	[NT]
Iron-Dissolved	µg/L	10	Metals-022	[NT]	7	350	[NT]		[NT]	[NT]
Manganese-Dissolved	µg/L	5	Metals-022	[NT]	7	13	[NT]		[NT]	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	[NT]	7	<1	[NT]		[NT]	[NT]
Lead-Dissolved	µg/L	1	Metals-022	[NT]	7	<1	[NT]		[NT]	[NT]
Selenium-Dissolved	µg/L	1	Metals-022	[NT]	7	<1	[NT]		[NT]	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	[NT]	7	33	[NT]		[NT]	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	[NT]	7	<0.05	<0.05	0	[NT]	[NT]

QUALITY CONTROL: Ion Balance						Duplicate Spike F			Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	309095-2
Date prepared	-			27/10/2022	1	27/10/2022	27/10/2022		27/10/2022	27/10/2022
Date analysed	-			27/10/2022	1	27/10/2022	27/10/2022		27/10/2022	27/10/2022
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	10	10	0	103	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	<0.5	<0.5	0	99	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	8.2	8.0	2	105	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	2	2	0	105	[NT]
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	33	31	6	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	33	31	6	104	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	<1	2	67	97	95
Chloride, Cl	mg/L	1	Inorg-081	<1	1	7	7	0	102	94
Ionic Balance	%		Inorg-040	[NT]	1	9.0	8.0	12	[NT]	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Re	covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			02/11/2022	[NT]		[NT]	[NT]	02/11/2022	[NT]
Date analysed	-			02/11/2022	[NT]		[NT]	[NT]	02/11/2022	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]	[NT]	[NT]	[NT]	92	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 311632

Client Details	
Client	Aquatic Science and Management
Attention	Mathew Birch
Address	PO Box 214, Bellingen, NSW, 2454

Sample Details	
Your Reference	Phillip Drive Groundwater
Number of Samples	6 Water
Date samples received	25/11/2022
Date completed instructions received	25/11/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	02/12/2022			
Date of Issue	01/12/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 311632 Revision No: R00

Page | 1 of 11

HM in water - dissolved	HM in water - dissolved								
Our Reference		311632-1	311632-2	311632-3	311632-4	311632-5			
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6			
Type of sample		Water	Water	Water	Water	Water			
Date prepared	-	28/11/2022	28/11/2022	28/11/2022	28/11/2022	28/11/2022			
Date analysed	-	28/11/2022	28/11/2022	28/11/2022	28/11/2022	28/11/2022			
Silver-Dissolved	µg/L	<1	<1	<1	<1	<1			
Aluminium-Dissolved	µg/L	280	160	290	480	1,300			
Arsenic-Dissolved	µg/L	<1	<1	2	2	<1			
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	0.1	<0.1			
Chromium-Dissolved	µg/L	1	<1	2	1	1			
Copper-Dissolved	µg/L	<1	<1	22	3	<1			
Iron-Dissolved	µg/L	280	690	150	120	1,100			
Manganese-Dissolved	µg/L	56	47	<5	<5	9			
Nickel-Dissolved	µg/L	<1	1	2	<1	<1			
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1			
Selenium-Dissolved	µg/L	<1	<1	<1	<1	<1			
Zinc-Dissolved	µg/L	3	19	17	24	12			
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05			

HM in water - dissolved		
Our Reference		311632-6
Your Reference	UNITS	GW8
Type of sample		Water
Date prepared	-	28/11/2022
Date analysed	-	28/11/2022
Silver-Dissolved	μg/L	<1
Aluminium-Dissolved	µg/L	1,500
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	1
Copper-Dissolved	µg/L	2
Iron-Dissolved	μg/L	1,000
Manganese-Dissolved	µg/L	<5
Nickel-Dissolved	µg/L	<1
Lead-Dissolved	µg/L	<1
Selenium-Dissolved	µg/L	<1
Zinc-Dissolved	µg/L	8
Mercury-Dissolved	µg/L	<0.05

Ion Balance						
Our Reference		311632-1	311632-2	311632-3	311632-4	311632-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Date analysed	-	25/11/2022	25/11/2022	25/11/2022	25/11/2022	25/11/2022
Calcium - Dissolved	mg/L	8.0	5.9	7.7	0.7	3
Potassium - Dissolved	mg/L	<0.5	0.7	3	1	1
Sodium - Dissolved	mg/L	5.3	5.1	19	9.9	12
Magnesium - Dissolved	mg/L	1	0.7	2	0.9	3
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	22	19	41	6	5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	22	19	41	6	5
Sulphate, SO4	mg/L	4	2	4	3	<1
Chloride, Cl	mg/L	9	8	17	12	23
Ionic Balance	%	-2.0	-4.0	1.0	5.0	12

Ion Balance		
Our Reference		311632-6
Your Reference	UNITS	GW8
Type of sample		Water
Date prepared	-	25/11/2022
Date analysed	-	25/11/2022
Calcium - Dissolved	mg/L	2
Potassium - Dissolved	mg/L	1
Sodium - Dissolved	mg/L	12
Magnesium - Dissolved	mg/L	2
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	<5
Carbonate Alkalinity as CaCO₃	mg/L	<5
Total Alkalinity as CaCO₃	mg/L	<5
Sulphate, SO4	mg/L	<1
Chloride, Cl	mg/L	17
Ionic Balance	%	24

Miscellaneous Inorganics						
Our Reference		311632-1	311632-2	311632-3	311632-4	311632-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/11/2022	30/11/2022	30/11/2022	30/11/2022	30/11/2022
Date analysed	-	30/11/2022	30/11/2022	30/11/2022	30/11/2022	30/11/2022
Total Dissolved Solids (grav)	mg/L	46	39	150	37	190

Miscellaneous Inorganics		
Our Reference		311632-6
Your Reference	UNITS	GW8
Type of sample		Water
Date prepared	-	30/11/2022
Date analysed	-	30/11/2022
Total Dissolved Solids (grav)	mg/L	52

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: HM in water - dissolved						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	311632-2
Date prepared	-			28/11/2022	1	28/11/2022	28/11/2022		28/11/2022	28/11/2022
Date analysed	-			28/11/2022	1	28/11/2022	28/11/2022		28/11/2022	28/11/2022
Silver-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	92	[NT]
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	280	270	4	99	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	96	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	96	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	[NT]
Iron-Dissolved	µg/L	10	Metals-022	<10	1	280	280	0	99	[NT]
Manganese-Dissolved	µg/L	5	Metals-022	<5	1	56	55	2	100	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	95	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98	[NT]
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	3	3	0	98	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	113	114

QUALI		Duplicate Spike Recove								
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	311632-2
Date prepared	-			25/11/2022	1	25/11/2022	25/11/2022		25/11/2022	25/11/2022
Date analysed	-			25/11/2022	1	25/11/2022	25/11/2022		25/11/2022	25/11/2022
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	8.0	7.9	1	96	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	<0.5	<0.5	0	97	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	5.3	5.4	2	96	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1	1	0	100	[NT]
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	22	22	0	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	22	22	0	100	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	4	3	29	91	86
Chloride, Cl	mg/L	1	Inorg-081	<1	1	9	9	0	94	95
Ionic Balance	%		Inorg-040	[NT]	1	-2.0	-1.0	-67	[NT]	[NT]

QUALITY COI		Duplicate			Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			30/11/2022	[NT]		[NT]	[NT]	30/11/2022	[NT]
Date analysed	-			30/11/2022	[NT]		[NT]	[NT]	30/11/2022	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]	[NT]	[NT]	[NT]	108	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

The mass inbalance may be caused by other ions that have not been measured.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 315276

Client Details	
Client	Aquatic Science and Management
Attention	Mathew Birch
Address	PO Box 214, Bellingen, NSW, 2454

Sample Details	
Your Reference	Phillip Drive Groundwater
Number of Samples	6 Water
Date samples received	27/01/2023
Date completed instructions received	27/01/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	03/02/2023				
Date of Issue	03/02/2023				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Loren Bardwell, Development Chemist Nick Sarlamis, Assistant Operation Manager Authorised By

Nancy Zhang, Laboratory Manager

HM in water - dissolved						
Our Reference		315276-1	315276-2	315276-3	315276-4	315276-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Depth		Surface	Surface	Surface	Surface	Surface
Date Sampled		25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/01/2023	30/01/2023	30/01/2023	30/01/2023	30/01/2023
Date analysed	-	30/01/2023	30/01/2023	30/01/2023	30/01/2023	30/01/2023
Silver-Dissolved	µg/L	<1	<1	<1	<1	<1
Aluminium-Dissolved	µg/L	440	220	220	430	800
Arsenic-Dissolved	µg/L	<1	<1	1	3	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	2	<1	1	2	1
Copper-Dissolved	µg/L	2	<1	5	1	<1
Iron-Dissolved	µg/L	480	620	120	210	500
Manganese-Dissolved	µg/L	56	53	<5	<5	<5
Nickel-Dissolved	μg/L	1	1	<1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	µg/L	8	5	7	16	9
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved		
Our Reference		315276-6
Your Reference	UNITS	GW8
Depth		Surface
Date Sampled		25/01/2023
Type of sample		Water
Date prepared	-	30/01/2023
Date analysed	-	30/01/2023
Silver-Dissolved	µg/L	<1
Aluminium-Dissolved	µg/L	1,600
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	μg/L	2
Copper-Dissolved	µg/L	27
Iron-Dissolved	µg/L	1,000
Manganese-Dissolved	µg/L	6
Nickel-Dissolved	µg/L	1
Lead-Dissolved	µg/L	<1
Selenium-Dissolved	µg/L	<1
Zinc-Dissolved	µg/L	32
Mercury-Dissolved	μg/L	<0.05

Ion Balance						
Our Reference		315276-1	315276-2	315276-3	315276-4	315276-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Depth		Surface	Surface	Surface	Surface	Surface
Date Sampled		25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/01/2023	27/01/2023	27/01/2023	27/01/2023	27/01/2023
Date analysed	-	27/01/2023	27/01/2023	27/01/2023	27/01/2023	27/01/2023
Calcium - Dissolved	mg/L	8.5	3	5.9	1	0.8
Potassium - Dissolved	mg/L	0.5	0.9	2	0.7	0.7
Sodium - Dissolved	mg/L	7.4	8.0	7.8	9.2	7.7
Magnesium - Dissolved	mg/L	2	1	1	0.9	1
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	30	11	21	9	7
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	30	11	21	9	7
Sulphate, SO4	mg/L	4	2	3	2	<1
Chloride, Cl	mg/L	13	16	13	12	12
Ionic Balance	%	-8.0	-5.0	-4.0	0	1.0

Ion Balance		
Our Reference		315276-6
Your Reference	UNITS	GW8
Depth		Surface
Date Sampled		25/01/2023
Type of sample		Water
Date prepared	-	27/01/2023
Date analysed	-	27/01/2023
Calcium - Dissolved	mg/L	2
Potassium - Dissolved	mg/L	2
Sodium - Dissolved	mg/L	13
Magnesium - Dissolved	mg/L	2
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	7
Carbonate Alkalinity as CaCO₃	mg/L	<5
Total Alkalinity as CaCO ₃	mg/L	7
Sulphate, SO4	mg/L	3
Chloride, Cl	mg/L	19
Ionic Balance	%	6.0

Miscellaneous Inorganics						
Our Reference		315276-1	315276-2	315276-3	315276-4	315276-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Depth		Surface	Surface	Surface	Surface	Surface
Date Sampled		25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	02/02/2023	02/02/2023	02/02/2023	02/02/2023	02/02/2023
Date analysed	-	02/02/2023	02/02/2023	02/02/2023	02/02/2023	02/02/2023
Total Dissolved Solids (grav)	mg/L	60	48	56	38	36
	·		·	-		-

Miscellaneous Inorganics		
Our Reference		315276-6
Your Reference	UNITS	GW8
Depth		Surface
Date Sampled		25/01/2023
Type of sample		Water
Date prepared	-	02/02/2023
Date analysed	-	02/02/2023
Total Dissolved Solids (grav)	mg/L	64

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CC	NTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	315276-2
Date prepared	-			30/01/2023	1	30/01/2023	30/01/2023		30/01/2023	30/01/2023
Date analysed	-			30/01/2023	1	30/01/2023	30/01/2023		30/01/2023	30/01/2023
Silver-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		99	[NT]
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	440	[NT]		120	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		106	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		102	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	2	[NT]		110	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	1	2	[NT]		109	[NT]
Iron-Dissolved	µg/L	10	Metals-022	<10	1	480	[NT]		109	[NT]
Manganese-Dissolved	µg/L	5	Metals-022	<5	1	56	[NT]		113	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	1	[NT]		110	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		100	[NT]
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		102	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	8	[NT]		109	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	117	121

QUALITY CONTROL: Ion Balance						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	315276-2
Date prepared	-			27/01/2023	1	27/01/2023	27/01/2023		27/01/2023	27/01/2023
Date analysed	-			27/01/2023	1	27/01/2023	27/01/2023		27/01/2023	27/01/2023
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	8.5	[NT]		90	[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.5	[NT]		94	[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7.4	[NT]		98	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	2	[NT]		89	[NT]
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	30	28	7	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	30	28	7	94	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	4	4	0	112	109
Chloride, Cl	mg/L	1	Inorg-081	<1	1	13	13	0	108	107
Ionic Balance	%		Inorg-040	[NT]	1	-8.0	[NT]		[NT]	[NT]

QUALITY CONTROL: Miscellaneous Inorganics				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			02/02/2023	1	02/02/2023	02/02/2023		02/02/2023	[NT]
Date analysed	-			02/02/2023	1	02/02/2023	02/02/2023		02/02/2023	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	60	60	0	97	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 317514

Client Details	
Client	Aquatic Science and Management
Attention	Mathew Birch
Address	PO Box 214, Bellingen, NSW, 2454

Sample Details	
Your Reference	Phillip Drive Groundwater
Number of Samples	6 Water
Date samples received	28/02/2023
Date completed instructions received	28/02/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details			
Date results requested by	07/03/2023		
Date of Issue	07/03/2023		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Hannah Nguyen, Metals Supervisor Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 317514 Revision No: R00

Page | 1 of 12

HM in water - dissolved						
Our Reference		317514-1	317514-2	317514-3	317514-4	317514-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Depth		Surface	Surface	Surface	Surface	Surface
Date Sampled		27/02/2023	27/02/2023	27/02/2023	27/02/2023	27/02/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
Date analysed	-	01/03/2023	01/03/2023	01/03/2023	01/03/2023	01/03/2023
Silver-Dissolved	µg/L	<1	<1	<1	<1	<1
Aluminium-Dissolved	µg/L	360	330	250	410	2,100
Arsenic-Dissolved	µg/L	<1	5	<1	2	<1
Cadmium-Dissolved	µg/L	0.1	<0.1	<0.1	<0.1	0.2
Chromium-Dissolved	μg/L	<1	<1	<1	1	1
Copper-Dissolved	μg/L	<1	<1	2	<1	3
Iron-Dissolved	µg/L	390	400	150	200	1,700
Manganese-Dissolved	µg/L	110	35	6	<5	10
Nickel-Dissolved	μg/L	<1	1	<1	<1	2
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	µg/L	7	10	14	6	19
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved		
Our Reference		317514-6
Your Reference	UNITS	GW8
Depth		Surface
Date Sampled		27/02/2023
Type of sample		Water
Date prepared	-	01/03/2023
Date analysed	-	01/03/2023
Silver-Dissolved	µg/L	<1
Aluminium-Dissolved	µg/L	1,600
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	μg/L	1
Copper-Dissolved	µg/L	5
Iron-Dissolved	µg/L	950
Manganese-Dissolved	µg/L	<5
Nickel-Dissolved	µg/L	<1
Lead-Dissolved	µg/L	<1
Selenium-Dissolved	μg/L	<1
Zinc-Dissolved	µg/L	19
Mercury-Dissolved	µg/L	<0.05

Ion Balance						
Our Reference		317514-1	317514-2	317514-3	317514-4	317514-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Depth		Surface	Surface	Surface	Surface	Surface
Date Sampled		27/02/2023	27/02/2023	27/02/2023	27/02/2023	27/02/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
Date analysed	-	28/02/2023	28/02/2023	28/02/2023	28/02/2023	28/02/2023
Calcium - Dissolved	mg/L	9.1	4	5.1	<0.5	3
Potassium - Dissolved	mg/L	<0.5	<0.5	2	0.8	2
Sodium - Dissolved	mg/L	7.8	7.6	7.6	9.5	15
Magnesium - Dissolved	mg/L	1	2	1	0.8	4
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	21	7	17	6	<5
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	21	7	17	6	<5
Sulphate, SO4	mg/L	6	10	4	2	<1
Chloride, Cl	mg/L	15	12	11	12	29
Ionic Balance	%	-4.0	0	1.0	0	16

Ion Balance						
Our Reference		317514-6				
Your Reference	UNITS	GW8				
Depth		Surface				
Date Sampled		27/02/2023				
Type of sample		Water				
Date prepared	-	28/02/2023				
Date analysed	-	28/02/2023				
Calcium - Dissolved	mg/L	3				
Potassium - Dissolved	mg/L	2				
Sodium - Dissolved	mg/L	13				
Magnesium - Dissolved	mg/L	2				
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5				
Bicarbonate Alkalinity as CaCO ₃	mg/L	<5				
Carbonate Alkalinity as CaCO ₃	mg/L	<5				
Total Alkalinity as CaCO₃	mg/L	<5				
Sulphate, SO4	mg/L	7				
Chloride, Cl	mg/L	19				
Ionic Balance	%	13				
Miscellaneous Inorganics						
-------------------------------	-------	------------	------------	------------	------------	------------
Our Reference		317514-1	317514-2	317514-3	317514-4	317514-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Depth		Surface	Surface	Surface	Surface	Surface
Date Sampled		27/02/2023	27/02/2023	27/02/2023	27/02/2023	27/02/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023
Date analysed	-	03/03/2023	03/03/2023	03/03/2023	03/03/2023	03/03/2023
Total Dissolved Solids (grav)	mg/L	120	82	77	67	270

Miscellaneous Inorganics		
Our Reference		317514-6
Your Reference	UNITS	GW8
Depth		Surface
Date Sampled		27/02/2023
Type of sample		Water
Date prepared	-	03/03/2023
Date analysed	-	03/03/2023
Total Dissolved Solids (grav)	mg/L	230

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CC	ONTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	317514-2
Date prepared	-			01/03/2023	1	01/03/2023	01/03/2023		01/03/2023	01/03/2023
Date analysed	-			01/03/2023	1	01/03/2023	01/03/2023		01/03/2023	01/03/2023
Silver-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	108	102
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	360	350	3	91	#
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	95	96
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	0.1	0.1	0	93	97
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	96	96
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	99	97
Iron-Dissolved	µg/L	10	Metals-022	<10	1	390	370	5	97	#
Manganese-Dissolved	µg/L	5	Metals-022	<5	1	110	110	0	95	97
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98	97
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	87	88
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	92	95
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	7	7	0	97	98
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	111	111

QUALI	TY CONTRC	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	317514-2
Date prepared	-			28/02/2023	1	28/02/2023	28/02/2023		28/02/2023	28/02/2023
Date analysed	-			28/02/2023	1	28/02/2023	28/02/2023		28/02/2023	28/02/2023
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	9.1	9.2	1	88	82
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	<0.5	<0.5	0	88	83
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7.8	7.9	1	94	85
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1	1	0	89	84
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	21	[NT]		[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	[NT]
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	21	[NT]		97	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	6	6	0	109	111
Chloride, Cl	mg/L	1	Inorg-081	<1	1	15	15	0	109	108
Ionic Balance	%		Inorg-040	[NT]	1	-4.0	[NT]		[NT]	[NT]

QUALITY CONTROL: Ion Balance						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	5	28/02/2023	28/02/2023		[NT]	
Date analysed	-			[NT]	5	28/02/2023	28/02/2023		[NT]	
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	3	[NT]		[NT]	
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	2	[NT]		[NT]	
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	15	[NT]		[NT]	
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	4	[NT]		[NT]	
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	5	Inorg-006	[NT]	5	<5	[NT]		[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	<5	[NT]		[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	<5	[NT]		[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	<5	[NT]		[NT]	
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	5	<1	<1	0	[NT]	
Chloride, Cl	mg/L	1	Inorg-081	[NT]	5	29	27	7	[NT]	
Ionic Balance	%		Inorg-040	[NT]	5	16	[NT]		[NT]	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			03/03/2023	[NT]		[NT]	[NT]	03/03/2023	[NT]
Date analysed	-			03/03/2023	[NT]		[NT]	[NT]	03/03/2023	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]		[NT]	[NT]	98	[NT]

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

TDS values may be exagerated due to colloidal matter passing through the filter.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 319869

Client Details	
Client	Aquatic Science and Management
Attention	Mathew Birch
Address	PO Box 214, Bellingen, NSW, 2454

Sample Details	
Your Reference	Phillip Drive Groundwater
Number of Samples	6 Water
Date samples received	30/03/2023
Date completed instructions received	30/03/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	06/04/2023				
Date of Issue	24/04/2023				
Reissue Details	This report replaces R00 created on 06/04/2023 due to: revised report with additional results (Al, Fe & Ag).				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 319869 Revision No: R01

Page | 1 of 12

HM in water - dissolved						
Our Reference		319869-1	319869-2	319869-3	319869-4	319869-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Date Sampled		28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	03/04/2023	03/04/2023	03/04/2023	03/04/2023	03/04/2023
Date analysed	-	03/04/2023	03/04/2023	03/04/2023	03/04/2023	03/04/2023
Arsenic-Dissolved	µg/L	<1	<1	<1	2	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	<1	1	<1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	µg/L	4	8	18	12	28
Barium-Dissolved	µg/L	15	5	1	1	12
Beryllium-Dissolved	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt-Dissolved	µg/L	<1	1	<1	<1	1
Manganese-Dissolved	µg/L	48	5	<5	<5	8
Selenium-Dissolved	µg/L	<1	<1	<1	<1	<1
Iron-Dissolved	µg/L	330	460	40	210	1,500
Aluminium-Dissolved	µg/L	350	190	190	380	2,000
Silver-Dissolved	µg/L	<1	<1	<1	<1	<1

HM in water - dissolved		
Our Reference		319869-6
Your Reference	UNITS	GW8
Date Sampled		28/03/2023
Type of sample		Water
Date prepared	-	03/04/2023
Date analysed	-	03/04/2023
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	3
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	<1
Zinc-Dissolved	μg/L	31
Barium-Dissolved	μg/L	8
Beryllium-Dissolved	μg/L	<0.5
Cobalt-Dissolved	μg/L	<1
Manganese-Dissolved	μg/L	6
Selenium-Dissolved	μg/L	<1
Iron-Dissolved	μg/L	710
Aluminium-Dissolved	μg/L	1,400
Silver-Dissolved	μg/L	<1

Miscellaneous Inorganics						
Our Reference		319869-1	319869-2	319869-3	319869-4	319869-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Date Sampled		28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/03/2023	30/03/2023	30/03/2023	30/03/2023	30/03/2023
Date analysed	-	30/03/2023	30/03/2023	30/03/2023	30/03/2023	30/03/2023
Total Dissolved Solids (grav)	mg/L	140	45	45	34	300

Miscellaneous Inorganics		
Our Reference		319869-6
Your Reference	UNITS	GW8
Date Sampled		28/03/2023
Type of sample		Water
Date prepared	-	30/03/2023
Date analysed	-	30/03/2023
Total Dissolved Solids (grav)	mg/L	200

Ion Balance						
Our Reference		319869-1	319869-2	319869-3	319869-4	319869-5
Your Reference	UNITS	GW1	GW2	GW4	GW5	GW6
Date Sampled		28/03/2023	28/03/2023	28/03/2023	28/03/2023	28/03/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/03/2023	30/03/2023	30/03/2023	30/03/2023	30/03/2023
Date analysed	-	30/03/2023	30/03/2023	30/03/2023	30/03/2023	30/03/2023
Calcium - Dissolved	mg/L	7.9	2	5.6	<0.5	3
Potassium - Dissolved	mg/L	0.8	0.8	2	0.8	2
Sodium - Dissolved	mg/L	8.9	8.8	6.1	8.5	14
Magnesium - Dissolved	mg/L	1	2	1	1	5.1
Hardness	mgCaCO 3 /L	25	13	20	4.1	29
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	24	9	17	7	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	24	9	17	7	<5
Sulphate, SO4	mg/L	3	3	4	2	10
Chloride, Cl	mg/L	15	17	11	14	30
Ionic Balance	%	-3.0	-4.0	0	-9.0	8.0

Ion Balance		
Our Reference		319869-6
Your Reference	UNITS	GW8
Date Sampled		28/03/2023
Type of sample		Water
Date prepared	-	30/03/2023
Date analysed	-	30/03/2023
Calcium - Dissolved	mg/L	4
Potassium - Dissolved	mg/L	3
Sodium - Dissolved	mg/L	13
Magnesium - Dissolved	mg/L	3
Hardness	mgCaCO 3 /L	21
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5
Total Alkalinity as CaCO₃	mg/L	<5
Sulphate, SO4	mg/L	12
Chloride, Cl	mg/L	25
Ionic Balance	%	3.0

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CC	ONTROL: HN	/l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	319869-2
Date prepared	-			03/04/2023	1	03/04/2023	03/04/2023		03/04/2023	03/04/2023
Date analysed	-			03/04/2023	1	03/04/2023	03/04/2023		03/04/2023	03/04/2023
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	91	87
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	100	103
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	86	84
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	87	83
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	109	107
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	106	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	87	84
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	4	4	0	92	85
Barium-Dissolved	µg/L	1	Metals-022	<1	1	15	16	6	91	89
Beryllium-Dissolved	µg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	112	113
Cobalt-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	88	85
Manganese-Dissolved	µg/L	5	Metals-022	<5	1	48	49	2	91	87
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	88	78
Iron-Dissolved	µg/L	10	Metals-022	<10	1	330	330	0	91	#
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	350	350	0	89	#
Silver-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	95	[NT]

QUALITY CONTROL: Miscellaneous Inorganics				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			04/04/2023	6	30/03/2023	30/03/2023		04/04/2023	[NT]
Date analysed	-			04/04/2023	6	30/03/2023	30/03/2023		04/04/2023	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	6	200	190	5	105	[NT]

QUALI	TY CONTRC	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	319869-2
Date prepared	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	30/03/2023
Date analysed	-			30/03/2023	1	30/03/2023	30/03/2023		30/03/2023	30/03/2023
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7.9	7.8	1	105	117
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.8	0.8	0	103	112
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	8.9	8.9	0	88	92
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1	1	0	108	121
Hardness	mgCaCO3/L	3	Metals-020	[NT]	1	25	25	0	[NT]	[NT]
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	24	24	0	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	24	24	0	94	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	3	3	0	118	107
Chloride, Cl	mg/L	1	Inorg-081	<1	1	15	15	0	107	103
Ionic Balance	%		Inorg-040	[NT]	1	-3.0	-3.0	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Appendix B

Well Construction Report

Aquatic Science and Management

Groundwater Well Installation – Factual Report

Lot 2 DP1091323 – Phillip Drive, South West Rocks

Report No. RGS21305.1-AB 6 October 2022

REGIONAL GEOTECHNICAL SOLUTIONS

RGS21305.1-AB

6 October 2022

Aquatic Science and Management PO Box 214 BELLGINGEN NSW 2454

Attention: Mathew Birch

Dear Mathew,

RE: Proposed – Lot 2 DP1091323 – Phillip Drive, South West Rocks Groundwater Well Installation – Factual Report

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has installed seven groundwater monitoring wells at nominated locations at Lot 2 DP1091323, Phillip Drive, South West Rocks. An additional well was installed at the direction of the site project manager during fieldwork.

Well details are presented in the attached report.

If you have any questions regarding this project, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Tim Morris Principal Engineering Geologist

1/12 Jindalee Road Port Macquarie NSW 2444 Ph. (02) 6553 5641

Table of Contents

1	INT	RODUCTION	1
2	ME	THODOLOGY	1
3	SITE	e conditions	2
	3.1	Surface Conditions	2
	3.2	Subsurface Conditions	4
4	LIN	AITATIONS	5

Figures

Figure 1	Investigation Location Plan
Figure 2	Investigation Survey Plan

Appendices

Appendix A Results of Field Investigation

1 INTRODUCTION

Regional Geotechnical Solutions Pty Ltd (RGS) has installed seven groundwater monitoring wells at nominated locations at Lot 2 DP1091323, Phillip Drive, South West Rocks. An additional groundwater monitoring well was installed as directed by the site project manager and details of the well are included in this report.

The work was commissioned by Mathew Birch on behalf of Aquatic Science and Management Pty Ltd and was undertaken in accordance with proposal number RGS21305.1-AA, dated 27 June 2022.

2 METHODOLOGY

Field work for the assessment was undertaken on 5 and 6 September 2022 and was undertaken by a Geotechnical Engineer from RGS and included:

- Observation of site features and surrounding features relevant to the geotechnical conditions of the site;
- Eight boreholes undertaken by a track mounted drilling rig using a combination of push tube sampling and augering methods to depths of between 4.2m and 5.0m;
- Collection of samples for subsequent laboratory testing; and
- Installation of groundwater monitoring wells to variable depths in each borehole.

Engineering logs of the borehole presented in Appendix A. Investigation locations are shown on the attached Figure 1 and were staked and surveyed before and after the investigation. Survey coordinates and reduced levels of investigation locations were provided and are presented in Figure 2.

The monitoring wells were constructed with 50mm diameter Class 18 PVC casing and machine slotted well screen intervals with screw-threaded joints. The annulus between the monitoring wells and the borehole was backfilled with clean sand cuttings and 5mm filter gravel to the top of well screen. A 0.75m to 1.0m thick bentonite seal was installed above the filter gravel in each well, with the remaining annulus backfilled with gravel and cuttings. Each well was finished with approximately 900mm PVC casing stick up with a cement plug and covered with a lockable steel monument. The well construction details for each monitoring well are summarised in Table 1 and presented in Appendix A.

Detail	BH101	BH102	BH103	BH104	BH105	BH106	BH107	BH108
Ground Level	RL2.79m	RL3.76m	RL5.52m	RL4.55m	RL5.23m	RL1.75m	RL1.98m	RL6.27m
Bentonite Seal Thickness (m Below ground level (mbgl))	0.25 – 1.0	0.25 – 1.0	0.5 – 1.5	0.25 – 1.0	0.5 – 1.2	0.25 – 1.0	0.25 – 1.0	0.5 – 1.3
Screen Interval (mbgl)	1.0 - 4.75	1.0 - 4.1	1.5 – 4.5	1.0 - 4.2	1.2 – 4.2	1.0 - 4.0	1.0 – 2.5	1.3 – 4.3
Bottom of Well (mbgl and RL)	4.75 RL-1.96m	4.1 RL-0.34m	4.5 RL-1.02m	4.2 RL0.35m	4.2 RL1.03m	4.0 RL-2.25m	2.5 RL-0.52m	4.3 RL1.97m
Groundwater inflow during drilling (mbgl and RL)	1.2 RL1.59m	1.9 RL1.86m	1.6 RL3.92m	1.2 RL3.35m	1.3 RL3.93m	0.4 RL1.35m	0.3 RL1.68m	2.2 RL4.07m

 Table 1: Summary of Groundwater Monitoring Well Construction Details

Groundwater inflows were observed within the boreholes at the levels shown in Table 1. It should be noted that fluctuations in groundwater levels can occur as a result of seasonal variations, temperature, rainfall, tidal influences, and other similar factors, the influence of which may not have been apparent at the time of the assessment.

3 SITE CONDITIONS

3.1 Surface Conditions

The site is located to the north of Phillip Drive in an area of gently undulating topography with surface elevations of less than 10m AHD.

Undulating sand dune deposits with elevations of between 3m and 8m AHD were present in the south of the site and had been partially cleared of trees in the west. A low lying area with surface elevations <3m AHD was present to the north of the sand dune deposits and had been cleared of trees.

Drainage of the site is via a combination of overland flow to the north and surface infiltration into the sand soils. An area of surface water seepage was observed near the northern toe of the sand dune as shown on Figure 1.

A satellite image that shows the location of the site and the site setting is reproduced in Plate 1.

Plate 1: Satellite image dated 2022 obtained from the NSW Government 'Minview' website that illustrates the site location and setting. The approximate site boundaries are outlined in red.

Selected images from the investigation are presented below.

Looking south across the elevated sand dune deposits from near BH101 towards the existing houses on Phillip Drive.

Installed groundwater monitoring well with steel monument.

3.2 Subsurface Conditions

The Kempsey 1:25,000 Coastal Quaternary Geology Map indicates the site is underlain by Holocene age inter-barrier deposits comprising marine sand, silt, clay and peat in the northern low-lying area of the site and Pleistocene dune deposits comprising aeolian and marine sand and indurated sand in the elevated areas in the south of the site.

The materials encountered during the investigation are summarised in Table 2. Further details are presented on the engineering logs presented in Appendix A.

Material	Madarial Description	Depth to Base of Material Layer (m)									
Unit	Material Description	BH101	BH102	BH103	BH104	BH105	BH106	BH107	BH108		
TOPSOIL	Silty SAND, fine to medium grained, dark grey-grey, low plasticity silt, with grass rootlets	0.1	0.2	0.25	0.25	0.1	0.40	0.2	0.25		
AEOLIAN	SAND, fine to medium grained, pale grey	2.6	2.0	2.0	1.8	1.8			3.50		
MARINE	SAND, fine to medium grained, grey-brown, with low plasticity silt						≥5.0	2.5			
MARINE – INDURATED	SAND, fine to medium grained, grey-dark grey, with indurated layers of weakly to moderately cemented sand	≥4.75	≥4.75	≥4.50	≥4.20	≥4.20		≥4.50	≥5.0		

Table 2: Summary of Subsurface Materials

Table Notes: ≥

Indicates that base of material layer was not encountered

Indicates that the material was not encountered at the test location

4 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Geotechnical site investigation is based on data collection, judgment, experience, and opinion. By its nature, it is less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted geotechnical design practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

The recommended depth and properties of any soil, rock, groundwater, or other material referred to in this report is an engineering estimate based on the information available at the time of its writing. The estimate is influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Tim Morris Associate Engineering Geologist

Figures

GEUIEGINIGAL	
SOLUTIONS	
	Title:

LOT 2 DP1091323, PHILLIP DRIVE, SOUTH WEST ROCKS

INVESTIGATION LOCATION PLAN

300 110.	R0021000.1
Drawn By:	DS
Scale:	NTS
Date:	28-Sep-22
Figure No.	1

Appendix A

Results of Field Investigations

Γ	ENGINEERING LOG - BOREHOLE						BOREHOL				.E NO: BH101			
				. c	CLIENT: Aquatic Science & Management						AGE		1 of 1	
					Р	PROJECT NAME: Proposed Groundwater Wells						ОВИ	NO:	RGS21305.1
					S	SITE LO	CATI	ON: Lot 2 DP1091323 Phillip Drive, SWF	२		L	OGG	GED B	Y: DS
					т	EST L	OCAT	ION: Refer to Survey			D	ATE	:	5/9/22
	DRI	LL T	YPE:	Geop	robe			EASTING:	505570	m s	SURF	ACE	RL:	2.8 m
	BOREHOLE DIAMETER: INCLIN						IN	CLINATION: 90° NORTHING:	6582508	m [DATU	И:		AHD
		Drill	ling and Sar	npling	_			Material description and profile information				Field	d Test	
Ι.						0	TION .			щZ	ζ	e		Structure and additional
	DH	ATER	SAMPLES	RL	DEPTH	APH 0G	FICA.	MATERIAL DESCRIPTION: Soil type, plasticity/	/particle	STUR	ISTEN VSIT)	t Typ	esult	observations
	ME	Ŵ		(11)	(11)	GR	LASSI SY		, ,	MOI	DEI	Tes	Å	
H	F		0.10m			×//2	ပ SM	0.10m TOPSOIL: Silty SAND, fine to medium grain	ed.	М	0			TOPSOIL
	"						SP	dark grey-grey, low plasticity silt, with grass r	rootlets					AEOLIAN
							•	SAND: Fine to medium grained, grey						
							-							
			в	2.0) _		•							
		122			1.0									
		i/9/20					•							
		_ <u>_</u>												
			1.50m]				VV				
				1										
			Б											
02-00-13			В											
n7 n.n			2 35m											
7 NA (L			2.50m					Becoming pale grey-white						
1 50-50			2.60m				SP	2.60m SAND: Fine to coarse grained dark grey-bla						
0.3 2022			2.85m	0.0) _			weakly cemented	ю,					
1.2 5.1			D		3.0	ļ	•	With layers of moderately cemented indurate amongst non-cemented layers of sand	ed sand					
en Lu			<u></u>											
1-1001			В				•							
ei Lao an				-1.0	-)									
na natio			1.00m		4.0	1								
0.03.00.			4.0011		- 4.0									
13:38														
10/2022]							
LIG>> 0														
-Urawing				-2.(<u></u>		Hole Terminated at 4.75 m						
- - - - - - - - - - - - - - - - - - -					5.0	-		Well Installed						
50 L U G						-								
UU SEKI						-								
10. I BHI						-								
1612697				-3.0	<u> </u>									
				L,										
	LEGEND: Notes, Samples and Tests Consist Water VS						<u>Consisten</u> VS V€	ery Soft		<u>U(</u> <2	CS (kPa 25	a) Moisture Condition D Dry		
BURER(Water Level U ₅₀ 50mm Diameter tube				U₅₀ CBR	50mm Bulk s	n Diame ample f	ter tube sample for CBR testing	S So F Fir	oft rm		25 50	5 - 50) - 100	M Moist W Wet
	(Date and time shown) E Environmen			Enviro		al sample	St St	iff arv Stiff		10	0 - 200	W _p Plastic Limit		
e NUN-L	Water Outflow B Bulk Sample				B	Bulk S	Sample		H Ha	ard		>4	100 100	
and Strata Changes Fb Gradational or Field Tests					⊢b Fr Density	iable V	Ve	ery Lo	ose	Density Index <15%				
transitional strata Definitive or diction DCP(x-v) Dvnamic penetrometer test (test dent					on detector reading (ppm) etrometer test (test depth interval shown)		L ME	Lo D M	oose edium	n Dense	Density Index 15 - 35% Density Index 35 - 65%			
strata change					HP	Hand	Penetro	pmeter test (UCS kPa)			D	ense erv D4	ense	Density Index 65 - 85% Density Index 85 - 100%
Γ					E	ENGI	NEE	RING LOG - BOREHOLE			В	ORE	HOLI	E NO: BH102
-----------	------	------------------	----------------------------------	-------------	----------------	------------------	----------------------------	--	------------	--------------------	----------------	-----------------	---------------------	--
		4	REGIONA			LIENT	:	Aquatic Science & Management			P	AGE		1 of 1
	_		SOLUTIO	INICA	F	ROJE	CT NA	ME: Proposed Groundwater Wells			J		10:	RGS21305.1
					s		CATI	ON: Lot 2 DP1091323 Phillip Drive, SW	/R		L	OGG	ED B	Y: DS
					т	EST LO	CAT	ION: Refer to Survey			D	ATE	:	5/9/22
F	DRI		YPE:	Geop	obe			EASTING:	505587	m	SURF	ACE	RL:	3 8 m
	BO	REH	OLE DIAN	IETER	:		IN	CLINATION: 90° NORTHING:	6582471	m l	DATU	M:		AHD
		Dril	ling and Sar	npling	1			Material description and profile information				Field	d Test	
	_					0	NOI			шz	∑.	a		
	THO	ATER	SAMPLES	RL (m)	DEPTH	APHIC	IFICA ⁻ MBOL	MATERIAL DESCRIPTION: Soil type, plasticit	y/particle	STUR	ISTEN NSITY	t Typ	esult	observations
	Β	Ň				R R	:LASS SY			NO NO	CONS	Tes	£	
┢	ΡΤ						SM	TOPSOIL: Silty SAND, fine to medium gra	ined,	м				TOPSOIL
			0.20m		-		SP	0.20m dark grey, low plasticity silt, with grass root SAND: Fine to medium grained, pale grey	<u>ets</u>					AEOLIAN
						-								
				3.0	4.									
			В		- 1.0_									
					_									
		/202	1.50m	1]								
		1 5/9		2.0) .									
		<u> </u>	0.00			1				w				
1-06-30			2.00m											MARINE-INDURATED
00.0 202														inner pushtube casing jammed within outer casing
rj: RG 2.														No sample or cutting recovered
03-03 PI			В											
.3 2022-				1.0	빅 .									
RG 2.00			3.00m		- 3.0									
SD LIB:					_									
- 100]								
In Situ						1								
Lab and				0.0	,	1								
Datgel														
03.00.05					- 4. <u>0</u>									
3:38 10														Increased drilling resistance
0/2022 1														
ie>> 6/1														
DrawingF				<u>-1.0</u>	-			4.75m Hole Terminated at 4.75 m						
GPJ <<					- 5. <u>0</u>	-		Well Installed						
S LOGS						-								
0 SERIE														
.1 BH10														
ss21305				-2.0	<u> </u>									
T PIT R(_												
E - TES	LEG	END:			Notes, Sa	imples a	nd Tes	<u>is</u>	Consister	ncy erv Soft		<u>U(</u> <2	CS (kPa 5	a) Moisture Condition
DREHOL		<u>₹ı</u> Wat	ter Level			50mm	Diame	ter tube sample	S S	oft		25	- 50	M Moist
ORED B((Da	te and time s	hown)	E	Bulk s Enviro	ample i nmenta	al sample	St S	tiff		50 10	- 100 0 - 200	W _p Plastic Limit
NON-CC	-	vVat Wat	ter inflow ter Outflow		ASS B	Acid S Bulk S	Sulfate S Sample	Soil Sample	VSt V	'ery Stifl lard		20 >4	0 - 400 00	W _L Liquid Limit
-og RG	Stra	ta Ch	anges		Field Too	ts			Fb Fi	riable v	1/4	ervio	ose	Density Index <15%
B.GLB 1		G	radational or ansitional stra	ata	PID	Photo	onisati	on detector reading (ppm)	Senarcy	L	Lc	ose	500	Density Index 15 - 35%
2.00.3 LI		_ D Ǡ	efinitive or di	stict	DCP(x-y) HP	Dynar Hand	nic pen Penetro	errometer test (test depth interval shown) meter test (UCS kPa)		MI D	M כ ס	edium ense	Dense	 Density Index 35 - 65% Density Index 65 - 85%
р Д										VE) Ve	ery De	ense	Density Index 85 - 100%

Γ					-	ENGI	NEE	RING LOG - BOREHOLE			В	ORE	HOLI	E NO: BH103
			REGIONA			LIENT	:	Aquatic Science & Management			Р	AGE		1 of 1
			SOLUTIO	INIC/	AL F	ROJE		ME: Proposed Groundwater Wells			J	ОΒΙ	NO:	RGS21305.1
					5	SITE LO	CATI	ON: Lot 2 DP1091323 Phillip Drive, SW	'R		L	OGO	GED B	SY: DS
					1	EST L	ОСАТ	ION: Refer to Survey			D	ATE		5/9/22
\vdash						-	_							
	JRI 30F	LL I RFH	YPE: OLE DIAN	Geop IFTFF	robe 2.		IN	CLINATION: 90° NORTHING:	505642 6582420	m t		ACE M·	RL:	5.5 M AHD
F		Drill	ing and Sar	mplina				Material description and profile information	0002.20			Fiel	d Test	
							z				>			
6	3	К			DEDTL	L E C	SATIC		(norticle	ION H	ENC.	ype	벅	Structure and additional
		VATI	SAMPLES	(m)	(m)	LOC	SIFIC	characteristics,colour,minor component	ts		ISIST	est T	Rest	observations
2	≥	-				U	CLAS			Σö	б ^ц	F		
ł	ז				_		SM	TOPSOIL: Silty SAND, fine to medium grai	ned,	М				TOPSOIL
						-	SP	0.25m dark grey, low plasticity siit, with grass roots	, 	-				
				5.	5									
						-	•							
					-	-								
					1.0									
		2			-									
		/202			-									
		1 5/9		4.	D	-								
	-	<u> </u>												
						-								
-06-30					2.0		SP	SAND: Fine to medium grained, grev-dark (-				MARINE-INDURATED
0.2021					-	-		with indurated layers of weakly to moderate	ely					
RG 2.00					-									
-03 Prj:				3.	<u>)</u>									
2022-03					-		•							
2.00.3					- 30	-								
LIb: RG						-								
- DGD]	-								
Situ Tool		2.0				-								
and In S		2.0												
lgel Lab					-									
0.09 Da					4.0									
10.03.0]								
2 13:38						1								
5/10/202					2			4.50m						
JFile>> (-		Hole Terminated at 4.50 m Well Installed						
Drawing					1	-								
GPJ <<						4								
SLOGS.					-	_								
SERIES					-									
BH100				0.	<u>)</u>									
21305.1						1								
PIT RGS						1								
L TESTF	EG	END:			Notes, Sa	amples a	I Ind Tes	lts	Consister	l 1cy		U	∣ CS (kPa	a) Moisture Condition
	Vate	<u>er</u>	. /		U ₅₀	50mm	n Diame	ter tube sample	VS V S S	ery Soft oft		<2 25	25 5 - 50	D Dry M Moist
ED BOR	₹	Wat (Dat	er Level te and time s	hown)	CBR	Bulk s	sample I	or CBR testing	F Fi	irm		50) - 100	W Wet
► CORE	Water Outflow					Acid S	Sulfate S	soil Sample	VSt V	un ery Stiff		20)0 - 200)0 - 400	W _L Liquid Limit
RG NO	→ Water Outflow B Strata Changes					Bulk S	Sample		H H Fb Fi	ard riable		>4	100	
B Log		. <u>a ona</u> G	radational or		Field Tes	sts	iori- "	an detector reading ()	Density	V	V	ery Lo	oose	Density Index <15%
3 LIB.GL		tra _ De	ansitional stra efinitive or di	ata stict	DCP(x-y)	Pnoto Dynar	nonisatio mic pen	etrometer test (test depth interval shown)		L ME	D M	oose lediun	n Dense	Density Index 35 - 35% Density Index 35 - 65%
3G 2.00.		st	rata change		HP	Hand	Penetro	ometer test (UCS kPa)		D VD	D V	ense ery D	ense	Density Index 65 - 85% Density Index 85 - 100%

						ENGI	NEE	RING LOG - BOREHOLE			В	ORE	HOLE	E NO: BH104
	-	F F	REGIONA	AL HNIC/	<u>и</u> (CLIENT	:	Aquatic Science & Management			Р	AGE	:	1 of 1
		5	SOLUTIO	NS NS		PROJE	CT NA	ME: Proposed Groundwater Wells			J	ов і	NO:	RGS21305.1
					:	SITE LO	CATI	ON: Lot 2 DP1091323 Phillip Drive, SW	'R		L	OGO	GED B	Y: DS
						TEST L	OCAT	ION: Refer to Survey			D	ATE	:	6/9/22
	RILL	. TY	'PE:	Geop	robe			EASTING:	505795	m s	SURF	ACE	RL:	4.6 m
	ORE	HO		AETEF	R:		IN	CLINATION: 90° NORTHING:	6582495	m I	DATU	M:	-1 T 4	AHD
			ig and Sar	npiing			z	Material description and profile information				Field		
METHOD	WATER		SAMPLES	RL (m)	DEPTI (m)	GRAPHIC LOG	ASSIFICATIC SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor component	y/particle ts	MOISTURE	DENSISTENC)	Test Type	Result	Structure and additional observations
	-					×///	J SP	TOPSOIL · SAND fine to medium grained	dark	M	В В			TOPSOIL
	-	0) 30m		-	-		0.25m grey, with rootlets, trace silt		IVI				
			ES		-	_	SP	SAND: Fine to medium grained, pale grey						AEOLIAN
		C).50m	4.	<u>)</u>									
		4			-									
	202/		.00m		- 1.0)								
	1 5/9	5		1]								
	-≚	≟	ES							W	1			
				3.0		-								
		1	.60m			-								
		1	.80m		-		SP	SAND: Fine to medium grained, dark grev-	 dark					MARINE-INDURATED
02-00			ES		- 2.0	2		brown, weakly cemented						
-1707 0.		2	2.20m	-	-	-								
NU:2 UN		2.20m -												
ilu m-		2.0												
£0-7707		2.0			_									
0.00.2 0					- 30]								
2					0.9	1								
1901 - 16					1	-								
0 10		1.0				-								
n n					5	-								
alge La					-	-								
1 80.00					- 4.0	<u>)</u>	•							Reduced drilling resistance
2010 Q								4.20m						
2022 10:0					-			Hole Terminated at 4.20 m						
10				0.0	<u></u>									
MIIGTIE					_									
<pre>c</pre>					- 50									
2000					0.0									
					1	-								
100 261				1		-								
- COO				-1.	5	-								
17697					-	-								
	EGEND: -				-			te .	Consister	CV		114	CS (kp-	Moisture Condition
	Vater							<u></u>	VS Ve	ery Soft	t	<2	25	D Dry
BURE	Water Level (Date and time shown)			U ₅₀ CBR	50mn Bulk s	n Diame sample i	τer τube sample for CBR testing	S So F Fi	oft rm		25 50	5 - 50) - 100	W Moist W Wet	
	(Date and time shown) E → Water Inflow ASS			E ASS	Envir Acid S	onmenta Sulfate \$	al sample Soil Sample	St St VSt Ve	iff ery Stiff	;	10 20)0 - 200)0 - 400	W _p Plastic Limit W ₁ Liquid Limit	
- 10 -	→ Water Outflow B				В	Bulk	Sample	•		ard		>2	100	
<u>S</u>	Strata Changes Gradational or				Field Te	sts			Density	V	V	ery Lo	ose	Density Index <15%
		Gradational or The transitional strata				Photo) Dyna	ionisati mic pen	on detector reading (ppm) etrometer test (test depth interval shown)		L ME	Lo D M	oose ediun	n Dense	Density Index 15 - 35% Density Index 35 - 65%
2002 02		transitional strata DC Definitive or distict DC strata change				Hand	Penetro	ometer test (UCS kPa)		D VD	D V	ense erv De	ense	Density Index 65 - 85% Density Index 85 - 100%

Γ					E	NGI	NEE	RING LOG - BOREHOLE			В	ORE	HOLE	E NO: BH105
			REGION/	AL HNICA	, c		:	Aquatic Science & Management			P	AGE		1 of 1
	ź		SOLUTIO	NS	P	ROJE	CT NA	ME: Proposed Groundwater Wells			J	OB I	NO:	RGS21305.1
					S	ITE LO	CATI	ON: Lot 2 DP1091323 Phillip Drive, SW	/R		L	ogo	GED B	Y: DS
					т	EST L	OCAT	ION: Refer to Survey			D	ATE	:	6/9/22
	DRI	LL T	YPE:	Geopr	obe			EASTING:	505873	m s	SURF	ACE	RL:	5.2 m
	BOI	REH	OLE DIAN	IETER	:		IN	CLINATION: 90° NORTHING:	6582438	m I	DATU	И:		AHD
		Drill	ing and Sar	npling			1	Material description and profile information		1		Fiel	d Test	
	_	~				U	NOIT -			щZ	ζ	Ð		Structure and additional
	D H	ATEF	SAMPLES	RL	DEPTH	APHI	FICA	MATERIAL DESCRIPTION: Soil type, plasticit	y/particle	STUR	ISTE NSIT	t Typ	esult	observations
	Β	Ň		(11)	(11)	GR	LASSI SY		13	MON	DE	Tes	Ř	
\vdash	_					×//×	ပ SP	0.10m TOPSOIL SAND fine to medium grained	arev		0			TOPSOIL
'	1		0.20m	5. <u>0</u>			SP	white, rootlets		M				
							•	SAND: Fine to medium grained, pale grey-	white					
							-							
			ES				•							
					1. <u>0</u>		-							
			1.20m	4.0	.									
		▶		-] .									
			1.50m		1									
			ES 1.80m		1]		1.80m						
					2.0		SP	SAND: Fine to medium grained, grey to pa	le brown,	1				MARINE-INDURATED
021-06-3			ES 2 20m		1 -		•							
2.00.0 2			2.2011	<u>3.0</u>										
Prj: RG														
22-03-03														
.00.3 20														
-ib: RG					3.0									
- DGD I				2.0										Reduced drilling resistance
itu Tool														5
and In S														
atgel Lat														
00.09 D					4.0		•							
8 10.03				1.0				4.20m						
2022 13:5] .			Hole Terminated at 4.20 m						
>> 6/100] .									
awingFile					1									
J < <dra< th=""><td></td><td></td><td></td><td></td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dra<>					5.0									
OGS.GF					-]								
ERIES L				0.0	1.	1								
BH100 S						1								
21305.1						1								
PIT RG						1								
- TEST	EG	END:	1		Notes, Sa	mples a	nd Tes	<u>is</u>	Consister			<u>U</u>	CS (kPa	a) Moisture Condition
REHOLE	Nate	er Wat	er Level		U ₅₀	50mm	n Diame	ter tube sample	S S	ery Soft oft		<2 25	₂ə 5 - 50	M Moist
RED BO	_	(Dat	te and time s	hown)	CBR E	Bulk s Enviro	ample to nmenta	or CBR testing Il sample	F Fi St S	irm tiff		50 10) - 100)0 - 200	W Wet W _p Plastic Limit
NON-CO	► _	Wat Wat	er Inflow er Outflow		ASS B	Acid S Bulk S	Sulfate S Sample	Soil Sample	VSt V	ery Stiff ard		20 >2)0 - 400 100	W _L Liquid Limit
og RG	Strat	ta Cha	anges		- Field Tee				Fb Fi	riable	11-		099	Density Index <15%
B.GLB L		G tra	radational or ansitional stra	ata	PID	Photo	ionisati	on detector reading (ppm)	Density	L	Lc	ose		Density Index 15 - 35%
2:00.3 LI		– D	efinitive or di rata change	stict	UCP(x-y) HP	Dynar Hand	nic pen Penetro	etrometer test (test depth interval shown) meter test (UCS kPa)		ME D) M De	ediun ense	1 Dense	e Density Index 35 - 65% Density Index 65 - 85%
RG 2		31	.a.a onanye							VD	Ve	ery De	ense	Density Index 85 - 100%

					E	NGI	NEE	RIN	IG LOG - E	BOREH	OLE			В	BORE	HOLE	E NO: BH106
			REGION/		, 0		:		Aquatic Scie	ence & Ma	inagement			Р	AGE		1 of 1
	ź		SOLUTIO	NS	P	ROJE	CT NA	ME:	Proposed G	Groundwate	er Wells			J	овι	NO:	RGS21305.1
					s		CATI	ON:	Lot 2 DP109	91323 Phil	lip Drive, SW	'R		L	OGC	ED B	Y: DS
					т	EST L	OCAT	ION:	Refer to Su	rvey				D	ATE	:	5/9/22
	RI	н т	YPF	Geopr	obe						FASTING	505792	m s	SURF	ACF	RI ·	1.8 m
E	301	REH	OLE DIAN				IN	CLIN	iation: 90°		NORTHING:	6582515	im I	DATU	M:		AHD
		Drill	ing and Sar	npling					Material descript	ion and prof	ile information				Fiel	d Test	
							NO							5			
	2	ËR		RL	DEPTH	UHC DHC	CATI	М	IATERIAL DESC	RIPTION: S	oil type, plasticit	v/particle	TURE	SIT Y	Lype	sult	Structure and additional observations
1 I I I I I I I I I I I I I I I I I I I		MA	SAMPLES	(m)	(m)	SRAI	SSIF		characteris	tics,colour,m	ninor componen	ts		DEN	lest.	Res	
							CLA						20	о С	 		
							SM		TOPSOIL: Silty dark grey, low	/ SAND, fine plasticity silt,	to medium grai with rootlets	ned,					TOPSOIL
			0 40m			\mathbb{K}		0.40m	0,,,								
					-		SP		SAND: Fine to	medium gra	ined, grey		м	1			MARINE
				1.0	-								W				
			ES	_	-												
					1. <u>0</u>												
			1.20m				-										
			1.80m	0.0													
9		ES - 2.0															
2021-06		ES 2.20m - 2.0															
3 2.00.0																	
3 Prj: RC																	
022-03-0		-1.0															
2.00.3 2			-1.0														
LIb: RG			3.0														
- DGD																	
Situ Tool																	
and In S																	
atgel Lat				-2.0													
00.09 D					4.0												
3 10.03.					-												
22 13:36																	
6/10/20																	
ngFile>>				-3.0	-												
< <drawi< th=""><td></td><td colspan="4">-3.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawi<>		-3.0															
GS.GPJ	┥				5.0	[.· · · . 		5.00m	Hole Terminate	ed at 5.00 m							
RIES LO] -	1			Hole collapse to	o 3m, well in	stalled to 4m						
4100 SE					1 -	-											
305.1 BI					-	-											
RGS21				-4.0	1.	-											
EST PIT	FG			· ·	Notes Sa	mples a	nd Tee	ts				Consisto	ncv		 	CS (kPa	Moisture Condition
	Vate	<u>er</u>				pica a	D:-:	<u></u>				VS V	/ery Soft		</td <td>25</td> <td>D Dry</td>	25	D Dry
BORE		Wat	er Level	hourn	U₅₀ CBR	oumm Bulk s	ample f	for CB	e sample R testing			F F	irm		28 50	5 - 50) - 100	W Wet
COREL	-	(Dat Wat	e and time s er Inflow	nown)	E ASS	Enviro Acid S	onmenta Sulfate S	al samı Soil Sa	ple Imple			St S VSt V	stiff /ery Stiff		10 20)0 - 200)0 - 400	W _p Plastic Limit W ₁ Liquid Limit
AG NON	-	Wat	er Outflow		В	Bulk S	Sample						lard riable		>4	100	
B Log	otrat	<u>a Cha</u> G	anges radational or		Field Tes	ts			,	,		Density	V	V	ery Lo	ose	Density Index <15%
3 LIB.GL		tra D	ansitional stra efinitive or di	ata stict	PID DCP(x-y)	Photo Dynar	ionisatio nic pen	on dete etrome	ector reading (ppn eter test (test dept	n) h interval sho	wn)		L ME	Lo D M	oose lediun	n Dense	Density Index 15 - 35% Density Index 35 - 65%
RG 2.00.	_	st	rata change		HP	Hand	Penetro	ometer	test (UCS kPa)					D V	ense ery D	ense	Density Index 65 - 85% Density Index 85 - 100%

Γ					E	ENGI	NEE	RING LOG - BOREHOLE			В	ORE	HOLE	E NO: BH107
			REGION/	AL HNICA	L C	CLIENT	:	Aquatic Science & Management			Ρ	AGE	:	1 of 1
			SOLUTIO	INS	 F	PROJE	CT NA	ME: Proposed Groundwater Wells			J	OB I	NO:	RGS21305.1
					5	SITE LO	CATI	ON: Lot 2 DP1091323 Phillip Drive, SW	R		L	OGC	GED B	Y: DS
					1	EST L	OCAT	ION: Refer to Survey			D	ATE	:	5/9/22
D) Rii BOF	LL T REH	YPE: OLE DIAN	Geopr IETER	obe :		IN	EASTING: CLINATION: 90° NORTHING:	505686 6582518	m \$ m	SURF	ACE M:	RL:	2.0 m AHD
		Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
							NO				5			
METHOD		WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATI SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component	//particle s	MOISTURE	CONSISTENC DENSITY	Test Type	Result	Structure and additional observations
PT	-	₿/2022	0.20m		-	-	SM	TOPSOIL: Silty SAND, fine to medium grain dark grey, with rootlets	ned,	м				TOPSOIL
	-	*	0.30m				SP	SAND: Fine to medium grained, grey-browr	n, with	w				MARINE
						_		low plasticity silt, with humus						
			ES											
				1.0	1.0									
			1.20m		_									
				1										
]									
			FS		-		•							
			20			-								
-06-30		2.20m -			2.0									
0.0 2021		<u>2.20m</u> –				-								
: RG 2.0					-	-		2.50m						
03-03 Pr						-	SP	SAND: Fine to medium grained, dark grey-	black,	1				MARINE-INDURATED
3 2022-								moderately cemented						
KG 2.00				-1.0	3.0									
50 CIB:														
00 - D0]								
In Situ 1]	1				-				
Lab and						-		SAND. Fine to medium grained, dark grey-(grey					
9 Datgel				20		+	•							
.03.00.0				-2.9	4.0	-								Increased ground water
3:38 10														inflow
1 2202/0						-		4.50m						
e>> 6/1					-	-		Hole Terminated at 4.50 m						
rawingH						4								
1>> [4				-3.0	5.0									
LOGS.C														
SERIES														
BH100]								
\$21305.						1								
PIT RG				1	1									
	EGE	END:	l	<u> </u>	⊣ Notes, Sa	amples a	nd Tes	t <u>s</u>	Consister	ncy	<u> </u>	U	CS (kPa	a) Moisture Condition
	Vater Water Level				U ₅₀	50mm	n Diame	ter tube sample	s s	ery Soft oft	[<2 25	25 5 - 50	D Dry M Moist
	(Date and time shown)			CBR E	Bulk s Enviro	ample f	for CBR testing al sample	F Fi St S	irm tiff		50 10) - 100)0 - 200	W Wet W _n Plastic Limit	
	→ Water Inflow ASS				ASS	Acid S	Sulfate S	Soil Sample	VSt V	ery Stiff	i	20	0 - 400	W _L Liquid Limit
	→ Water Outflow B Strata Changes				в	Bulk S	barnple		Fb Fi	ard riable		>2	ŧUU	
GLB Lo	Gradational or transitional strata				Field Tes PID	sts Photo	ionisatio	on detector reading (ppm)	<u>Density</u>	V L	V Lo	ery Lo bose	oose	Density Index <15% Density Index 15 - 35%
0.3 LIB.		Gradational or transitional strata Definitive or distict				Dynar Hand	nic pen	etrometer test (test depth interval shown)		ME	D M	ediun	n Dense	Density Index 35 - 65%
RG 2.0		Transitional strata Definitive or distict strata change				i ianu	, eneur			VD	ם ע (ery De	ense	Density Index 85 - 100%

				E	ENGI	NEE	RING LOG - BOF	REHOLE			В	ORE	HOLI	E NO: BH108
		REGIONA	AL HNICA	, 0	LIENT	:	Aquatic Science	e & Management			Р	AGE	:	1 of 1
/		SOLUTIO	NS	P	ROJE	CT NA	ME: Proposed Grour	ndwater Wells			J	ов і	NO:	RGS21305.1
				S	ITE LO	CATI	ON: Lot 2 DP109132	23 Phillip Drive, SW	R		L	OGO	GED B	Y: DS
				т	EST L	OCAT	ION: Refer to Survey				D	ATE	:	5/9/22
DF	RILL 1		Geopr	obe				EASTING:	505786	m s	SURF	ACE	RL:	6.3 m
	Dril	ling and Sar		-			Material description a	nd profile information	0002400	m L	JATU	Field	d Test	AND
	1					z					~			
ETHOD	VATER	SAMPLES	RL (m)	DEPTH (m)	RAPHIC LOG	SIFICATIC	MATERIAL DESCRIPT characteristics,c	TON: Soil type, plasticity colour,minor component	//particle ts	DISTURE	SISTENC	est Type	Result	Structure and additional observations
Σ	>				5	CLAS S				¥S	CON	ľ		
РТ			6.0	-		SM	TOPSOIL: Silty SAN dark grey, with rootle	ND, fine to medium grainets	ned,	м				TOPSOIL
		0.30m	0.0	-		SP	SAND: Fine to medi	ium grained, pale grey-\						AEOLIAN
				-										
		ES		1 -										
				1.0										
		1.20m	5.0	-										
		ES												
	2022	20												
2000	1 5/9/	2.20m 4.0 2.0												
	<u> </u>	. 2.2011	4.0											
÷				-										
		ES												
				3.0_										
		<u>3.20m</u> <u>3.0</u> <u>3.0</u>												
- 60 - 10		3.0					3.50m							
AD/T	1] -		SP	SAND: Fine to medi moderately cemente	 ium grained, dark browr ed	n-black,					MARINE-INDURATED
1														
				4.0_										
2			2. <u>0</u>											
0.10201														
2						-	vveakly cemented							
				- 5.0			5.00m							
0.0001	1			-			Hole Terminated at Well Installed to 4.3	5.00 m m						
			1.0	.										
				-										
2004				-	-									
				Notes Sa	mples a	nd Tee	s		Consistor			114		Moisture Condition
Wa	iter			U _{F0}	50mm	Diame	≔ ter tube sample		VS Ve S S	ery Soft	I	<2 25	25 5 - 50	D Dry M Moist
	- Wa (Da	ter Level ite and time s	hown)	CBR	Bulk s	ample	or CBR testing		F Fi	rm		50) - 100)0 - 200	W Wet W Plastic Limit
	– Wa ∢ Wa	ter Inflow ter Outflow		ASS B	Acid S Bulk S	Sulfate Sample	Soil Sample		VSt Ve H H	ery Stiff ard	:	20)0 - 400 100	W _L Liquid Limit
<u>Str</u>	ata Ch	anges		Field Tes	ts	5.00			Fb Fr Densitv	iable V	V	ervio	ose	Densitv Index <15%
-	G tr	ansitional or	ata	PID DCP(x-v)	Photo Dvnar	ionisati nic pen	on detector reading (ppm) etrometer test (test depth inter	rval shown)		L M	Lo D M	oose ediun	n Dense	Density Index 15 - 35%
C-0017 DA	D si	trata change	SUCE	HP	Hand	Penetro	meter test (UCS kPa)	,		D VD	D 0 V	ense ery De	ense	Density Index 65 - 85% Density Index 85 - 100%

	REG GEO SOLI	IONAL TECHN	ICAL	С	LIEN	NT : Aquatic Science & ManagemenPR	OJECT : Prop	posed Ground	water Wells	HOLE	FILE / JOB NO	101 : RGS21305.1
POS	ITION	J : E	- 505	L0 569.9. N	DCA	TION : Refer to Survey 82507 5 (MGA2020 Zone 56) SURFA		√ · 2.79 (AHE)) ANG			1 41 · 90°
RIG	TYPE	: G	eoprol	bee.e.,	N	MOUNTING :	CONTR	ACTOR :	,,			
DAT	E ST/	ARTE	D: 5/	9/2022	D	ATE COMPLETED : DATE	LOGGED :	L(DGGED BY : I	DS	CHECKE	DBY:
\vdash	DRIL	LING	i			MATERIAL		PIE	ZOMETER CO		TION DETAIL	S
	RESS	ND WATER EVELS	(m) HTc	APHIC LOG	ROUP	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characte	ID BH101 eristic	Type Standpipe	Stick Up & RL 0.90 m 1.89 m AHD	Tip Depth 4.75 m -1.96	& RL Installatio ô m AHD	n Date Static Water Level
DRILL & CAS	WAT	GROU		- GR	ωŵ	Secondary and Minor Components				-		
	WAT				SP SP	Secondary and Minor Components Original Components Origina Components Origina Ori	<u>1.00 m</u> <u>1.00 m</u>				D: BH11 Sand DES SAN	ompletion 01 PVC TYPE: Threaded i machine slotted D/OD: 112/125 mm SCRPTION OF SLOTS: Machine slotted D PACK: 236-4.75 mm CUP: 0.90 m RL: 3.69 m AHD
			-			4.75m	4 75 m					
			- - 5.0 —			Hole Terminated at 4.75 m Well Installed	4.75 m			<u>1</u>		
See E detail & bas	Explan Is of al sis of c	atory l obrevi lescrip	Notes fo ations otions.	• or			I					

	NICAL	CLIEN	NT : Aquatic Science & Mar	nagemen P ROJE	CT : Propo	osed Ground	water Wells	HOLE		6 H102 O : RGS21305.1
POSITION :	F· 5055	LOCA	TION : Refer to Survey	SURFACE EI	FVATION	· 3 76 (AHE)) AN(UF 1
RIG TYPE : (Geoprot	be l	MOUNTING :	001117102 2	CONTRA	CTOR :	, , , , , , , , , , , , , , , , , , , ,	012111011		
DATE START	ED: 5/	9/2022 D	ATE COMPLETED :	DATE LOG	GED :	L	DGGED BY :	DS	CHEC	KED BY :
DRILLIN	G		MATERIAL			PIE	ZOMETER CO	ONSTRUC	TION DET/	AILS
PROGRESS 뜵	Ê.	U			ID	Туре	Stick Up & RL	Tip Depth	& RL Instal	lation Date Static Water Level
BRILLING & CASING WATER GROUND WA	DEPTH (I	GRAPHI LOG GROUP SYMBOL	MATERIAL DESCRIP Soil Type, Colour, Plasticity or Part Secondary and Minor Cor	PTION ticle Characteristic mponents	BH102	Standpipe	0.90 m 2.86 m AHD	4.10 m -0.34	m AHD	
	- 0.0	SM SM	TOPSOIL: Silty SAND, fine to m dark grey, low plasticity silt, with	nedium grained, grass rootlets			3H102	_	- No Surface Concrete	e Completion
See Explanatory & basis of descr		se	4.75m Hole Terminated at 4.75 m Well Installed	pale grey	<u>4.10 m</u> <u>4.10 m</u>				Bentonite	8H102 PVC TYPE: Threaded / machine slotted ID/OD: 112/125 mm DESCRIPTION OF SLOTS: Machine slotted AND PACK: 2.364.75 mm TCKUP: 0.90 m RL: 4.66 m AHD

RIG TYPE : Geoprot	794.6, N: 6582495.4 (MGA2020 Zone 56) SURI	
	he MOUNTING ·	CONTRACTOR · ANGLE FROM HORIZONTAL : 90°
DATE STARTED : 6/	/9/2022 DATE COMPLETED : DA	LOGGED : LOGGED BY : DS CHECKED BY :
	MATERIAL	PIEZOMETER CONSTRUCTION DETAILS
CASING ASING CASING ASING ASIN	C T D C T D	ID Iype Stock Up & RL Inp Lepth & RL Installation Date Static Water L BH104 Standpipe 0.90 m 3.65 m AHD 4.20 m 0.35 m AHD ristic
	SP SP Control Sector Se	No Surface Completion
	SP S	Bentonite

	REG	IONAL						НО	LE NO : BH106
-	SOL	UTIONS		C L(LIEN DCA	NT : Aquatic Science & ManagemenPROJE TION : Refer to Survey	CT : Proposed Gro	oundwater Wells	SHEET : 1 OF 1
PO	SITION	N : E	E: 505	792.2, N	l: 65	82515.0 (MGA2020 Zone 56) SURFACE E	EVATION : 1.75	(AHD) ANGLE FR	ROM HORIZONTAL : 90°
	TE ST	= : G ARTE	eoprol	ре 9/2022	י D	MOUNTING : DATE COMPLETED : DATE LOG	GED :	LOGGED BY : DS	CHECKED BY :
				-					
	DRIL	_LING _∝	i			MATERIAL			UCTION DETAILS
& CASING	WATER	GROUND WATE LEVELS	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	BH106 Standpipe	0.90 m 0.85 m AHD 4.00 m	2.25 m AHD
	WATER				SP SP	Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components TOPSOL: Sity SAND, fine to medium grained, dark grey, low plasticity silt, with rootlets 0.40m SAND: Fine to medium grained, grey SAND: Fine to medium grained, grey Hell Terminated at 5.00 m	1.00 m 1.00 m 4.00 m 4.00 m		 No Surface Completion Concrete Bentonite Bentonite Sand Since Surface And Andrew Solution Surface Solution Surface Completion Surfa
			-			Hole Terminated at 5.00 m Hole collapse to 3m, well installed to 4m			
See deta & ba	Explan ails of al asis of c	hatory N bbrevia descrip	5.5 Notes for ations otions.	or	•				

ſ	1	REGI GEOT	IONAL TECHNI	ICAL	C		NT · Aquatic Science & ManagemenPRO IF	HOLE NO : BH107 FILE / JOB NO : RGS21305	5.1
L		SULU	UTIONS		L	CA	TION : Refer to Survey	SHEET : 1 OF 1	
F	POS		N : E	E: 5056	586.0, N	1: 65	82517.8 (MGA2020 Zone 56) SURFACE EL	LEVATION : 1.98 (AHD) ANGLE FROM HORIZONTAL : 90°	
		E ST/	ARTE	D : 5/	9/2022	י D	DATE COMPLETED : DATE LOG	GED : LOGGED BY : DS CHECKED BY :	
		DRIL	LING	i			MATERIAL	PIEZOMETER CONSTRUCTION DETAILS	
		WATER	GROUND WATER LEVELS	DEPTH (m)	GRAPHIC LOG	GROUP SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	ID Type Stick Up & RL Tip Depth & RL Installation Date Static V BH107 Standpipe 0.90 m 1.08 m AHD 2.50 m -0.52 m AHD	Water Level
	Ā			0.0-			TOPSOIL: Silty SAND, fine to medium grained,	 b Mo Surface Completion	
				-		ЯΜ	0.30m	_ Concrete	
00536F9 «Destanda (10,000,00,00,00,00,00,00,00,00,00,00,00,	- Ld		02/08/22			SP	2.50m 2.50m 2.50m SAND: Fine to medium grained, grey-brown, with low plasticity silt, with humus 2.50m SAND: Fine to medium grained, dark grey-black, moderately cemented 3.50m SAND: Fine to medium grained, dark grey-black,	1.00 m Bentonite 1.00 m ID: BH107 PVC TYPE: machine slot Discord to the slot of	: Threaded & ted 5 mm • SLOTS: ted 4.75 mm RL: 2.88 m
1 2 R6521303.1 BH100 SERIES				- 4.0 -		SP			
IALLATION				-					
	¥			4.5-			4.50m Hole Terminated at 4.50 m		
GLB LOG IS AU PIEZUME				 - -	-				
20 C 00	See I letai k bas	Explan Is of at sis of d	atory i obrevia lescrip	Notes fo ations otions.	or				

ſ		REGI	ONAL						HOLE NO : BH108				
GEOTECHNICAL SOLUTIONS CLIENT : Aquatic Science & ManagemenPROJECT : Proposed Groundwater Wells LOCATION : Refer to Survey SHEET : 1 OF 1												DB NO: RGS21305.1 :1 OF 1	
POSITION : E: 505785.8, N: 6582400.3 (MGA2020 Zone 56) SURFACE ELEVATION : 6.27 (AHD) ANGLE FROM HORIZONTAL : 90°													
RIG TTPE: Geoprope MOUNTING: CONTRACTOR: DATE STARTED: 5/9/2022 DATE COMPLETED: DATE LOGGED: LOGGED BY : DS CHECKED BY :													
	PROG		LING ⊯				MATERIAL	ID	PIEZOME I ER CONS I RUCTION DE LAILS ID Type Stick Up & RL Tip Depth & RL Installation Date Static Water Level				
& CASING		WATER GROUND WATE LEVELS DEPTH (m		DEPTH (m)	GRAPHIC LOG	O O O O O O O O O O O O O O O O O O O		BH108	BH108 Standpipe 0.90 m 5.37 m AHD 4.30 m 1.97 m AHD				
				0.0			TOPSOIL: Silty SAND, fine to medium grained, dark grey, with rootlets			H108	No S	urface Completion	
				-	$\langle \rangle \rangle$	5101	0.28m				Conc	Concrete	
				-			SAND: Fine to medium grained, pale grey-white						
				0.5 —									
				-									
				-									
				-							Bento	onite	
				1.0-									
				-									
				-				<u>1.30 m</u> 1.30 m					
				1.5-									
				-									
0	- PT -			-									
2021-06-3				-		SP							
2.00.0				2.0-									
0 Prj: RG			<u></u>	_		ł							
021-06-3			5/09/22	-									
2.00.0 2			ö	25-		ł							
LIb: RG				-								ID: BH108 PVC TYPE: Threaded 8	
- DGD				-								machine slotted ID/OD: 112/125 mm DESCRIPTION OF SLOTS:	
Situ Too				-								Machine slotted SAND PACK: 2.36-4.75 mm STICKUP: 0.90 m RI : 7.17 m	
b and In				3.0 —								AHD	
atgel La				-									
.00.04 E				-									
24 10.02				-]	3.50m						
2022 14:2				3.5 -			SAND: Fine to medium grained, dark brown-black, moderately cemented						
> 7/10/2				-									
wingFile				-		ł							
ol < <dr< th=""><td></td><td></td><td></td><td>4.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dr<>				4.0-									
LOGS.GI				-									
SERIES	– AD/T			-		SP		4.30 m			<u></u>		
BH100 ;				-		•							
S21305.1				4.5-]	Weakly cemented						
N 2 RG				-									
TALLATIC				-		ł							
TER INS	¥			5.0 —			5.00m Hole Terminated at 5.00 m						
IEZOME				-			Well Installed to 4.3m						
IS AU F				-									
GLB Log				55-									
00.0 LIB.1	See Explanatory Notes for details of abbreviations												
3G 2.(& bas	sis of d	lescrip	otions.									